206
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Biochar and saline soil: mitigation strategy by incapacitating the ecological threats to agricultural land

, , , , , , , , , & show all

References

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M. 2019. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key anti-oxidant enzymes. J Plant Growth Regul. 38(1):70–82. doi: 10.1007/s00344-018-9810-2.
  • Ali S, Rizwan M, Qayyum MF, Ok YS, Ibrahim M, Riaz M, Arif SM, Hafeez F, Al-Wabel MI, Shahzad AN. 2017. Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res Int. 24(14):12700–12712. doi: 10.1007/s11356-017-8904-x.
  • Atkinson CJ, Fitzgerald JD, Hipps NA. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil. 337(1–2):1–18. doi: 10.1007/s11104-010-0464-5.
  • Bacha SAS, Iqbal B. 2023. Advancing agroecological sustainability through emerging genetic approaches in crop improvement for plants. Funct Integr Genomics. 23(2):145. doi: 10.1007/s10142-023-01074-4.
  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL. 2010. Effects of biochar and green waste compost amendments on mobility, bioavailability, and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut. 158(6):2282–2287. doi: 10.1016/j.envpol.2010.02.003.
  • Biederman LA, Harpole WS. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy. 5(2):202–214. doi: 10.1111/gcbb.12037.
  • Blanco-Canqui H. 2017. Biochar and soil physical properties. Soil Sci Soc Am J. 81(4):687–711. doi: https://doi.org/10.2136/sssaj2017.01.0017.
  • Buss W, Kammann C, Koyro HW. 2012. Biochar reduces copper toxicity in Chenopodium quinoa Willd in a sandy soil. J Environ Qual. 41(4):1157–1165. doi: 10.2134/jeq2011.0022.
  • Cui BJ, Cui EP, Hu C, Fan XY, Gao F. 2020. Effects of selected biochars application on the microbial community structures and diversities in the rhizosphere of water spinach (Ipomoea aquatica Forssk.) irrigated with reclaimed water. Environ Sci. 41:5636–5647. doi: 10.13227/j.hjkx.202006087.
  • Dagar JC, Yadav RK, Sharma PC, editors. 2019. Research developments in saline agriculture. Singapore: Springer. doi: 10.1007/978-981-13-5832-6.
  • Dahlawi S, Naeem A, Rengel Z, Naidu R, Saifullah. 2018. Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ. 625:320–335. doi: 10.1016/j.scitotenv.2017.12.257.
  • Din NU, Kashif M, Khan J, Hussain Z, Mendez JN, Saeed W. 2023. A comparative study of different types of the inversion algorithms for the reservoir characterization of Mehar Block, Pakistan. Arab J Geosci. 16(2):124. doi: 10.1007/s12517-023-11217-3.
  • Du X, Wang S, Feng H, Xu Z, Liu J, Ren X, Gao Z, Hu S. 2022. Morphological and physiological response of rice roots to the application of calcium polyamino acid under saline–alkali soil conditions. Arch Agron Soil Sci. 69:891–904. doi: 10.1080/03650340.2022.2045012.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutase. Plant Physiol. 59(2):309–314. doi: 10.1104/pp.59.2.309.
  • Gong H, Li Y, Li S. 2021. Effects of the interaction between biochar and nutrients on soil organic carbon sequestration in soda saline–alkali grassland: a review. Glob Ecol Conserv. 26:e01449. doi: 10.1016/j.gecco.2020.e01449.
  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ. 206:46–59. doi: 10.1016/j.agee.2015.03.015.
  • Hassani A, Azapagic A, Shokri N. 2021. Global predictions of primary soil salinization under changing climate in the 21st century. Nat Commun. 12(1):6663. doi: 10.1038/s41467-021-26907-3.
  • Hou Y, Zeng W, Hou M, Wang Z, Luo Y, Lei G, Zhou B, Huang J. 2021. Responses of the soil microbial community to salinity stress in maize fields. Biology (Basel). 10(11):1114. doi: 10.3390/biology10111114.
  • Huang H, Huang J, Wu Y, Zhuo W, Song J, Li X, Li L, Su W, Ma H, Liang S. 2023. The improved winter wheat yield estimation by assimilating glass LAI into a crop growth model with the proposed Bayesian posterior-based ensemble Kalman filter. IEEE Trans Geosci Remote Sensing. 61:1–18. doi: 10.1109/TGRS.2023.3259742.
  • Iqbal B, Khan I, Javed Q, Alabbosh KF, Inamullah ZZ, Rehman A. 2023. The high phosphorus incorporation promotes the soil enzymatic activity, nutritional status, and biomass of the crop. Pol J Environ Stud. 32(3):2125–2139. doi: 10.15244/pjoes/158765.
  • Iqbal B, Kong F, Ullah I, Ali S, Li H, Wang J, Khattak WA, Zhou Z. 2020. Phosphorus application improves the cotton yield by enhancing reproductive organ biomass and nutrient accumulation in two cotton cultivars with different phosphorus sensitivity. Agron. 10(2):153. doi: 10.3390/agronomy10020153.
  • Jiao Y, Zhu G, Meng G, Lu S, Qiu D, Lin X, Li R, Wang Q, Chen L, Zhao L, et al. 2023. Estimating non-productive water loss in irrigated farmland in arid oasis regions: based on stable isotope data. Agric Water Manage. 289:108515. doi: 10.1016/j.agwat.2023.108515.
  • Katsumi A, Chen GX, Asada K. 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic lsozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 35:497–504. doi: 10.1093/oxfordjournals.pcp.a078621.
  • Khan I, Iqbal B, Khan AA, Rehman A, Fayyaz A, Shakoor A, Farooq TH, Wang Li-xue, Inamullah. 2022. The interactive impact of straw mulch and biochar application positively enhanced the growth indexes of maize (Zea mays L.) crop. Agronomy. 12(10):2584. doi: 10.3390/agronomy12102584.
  • Kong F, Ling X, Iqbal B, Zhou Z, Meng Y. 2021. Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels. Arch Agron Soil Sci. 69(1):18–31. doi: 10.1080/03650340.2021.1955355.
  • Kookana RS. 2010. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Res. 48(7):627–637. doi: 10.1071/SR10007.
  • Leng L, Liu R, Xu S, Mohamed BA, Yang Z, Hu Y, Chen J, Zhao S, Wu Z, Peng H, et al. 2022. An overview of sulfur-functional groups in biochar from pyrolysis of biomass. J Environ Chem Eng. 10(2):107185. doi: 10.1016/j.jece.2022.107185.
  • Li G, Zhao X, Iqbal B, Zhao X, Liu J, Javed Q, Du D. 2023. The effect of soil microplastics on the Oryza sativa L. root growth traits under alien plant invasion. Front Ecol Evol. 11:1172093. doi: 10.3389/fevo.2023.1172093.
  • Ma J, Qiu Y, Zhao J, Ouyang X, Zhao Y, Weng L, Yasir AMD, Chen Y, Li Y. 2022. Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: particle size selectivity and role of dissolved organic matter. Environ Sci Technol. 56(6):3524–3534. doi: 10.1021/acs.est.1c07574.
  • Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot. 67(13):3831–3844. doi: 10.1093/jxb/erw080.
  • Murphy BR, Jadwiszczak MJ, Soldi E, Hodkinson TR. 2018. Endophytes from the crop wild relative Hordeum secalinum L. improve agronomic traits in unstressed and salt-stressed barley. Cogent Food Agri. 4(1):1549195. doi: 10.1080/23311932.2018.1549195.
  • Naliwajski M, Skłodowska M. 2021. The relationship between the antioxidant system and proline metabolism in the leaves of cucumber plants acclimated to salt stress. Cells. 10(3):609. doi: 10.3390/cells10030609.
  • Nie S, Mo S, Gao T, Yan B, Shen P, Kashif M, Zhang Z, Li J, Jiang C. 2023. Coupling effects of nitrate reduction and sulfur oxidation in a subtropical marine mangrove ecosystem with Spartina alterniflora invasion. Sci Total Environ. 862:160930. doi: 10.1016/j.scitotenv.2022.160930.
  • Prăvălie R, Patriche C, Borrelli P, Panagos P, Roșca B, Dumitraşcu M, Nita IA, Săvulescu I, Birsan MV, Bandoc G. 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ Res. 194:110697. doi: 10.1016/j.envres.2020.110697.
  • Qiu D, Zhu G, Bhat MA, Wang L, Liu Y, Sang L, Lin X, Zhang W, Sun N. 2023. Water use strategy of nitraria tangutorum shrubs in ecological water delivery area of the lower inland river: based on stable isotope data. J Hydrol. 624:129918. doi: 10.1016/j.jhydrol.2023.129918.
  • R Core Team. 2013. R: a language and environment for statistical computing, 4.1.1. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/.
  • Rassaei F. 2023a. Rice yield and carbon dioxide emissions in a paddy soil: a comparison of biochar and polystyrene microplastics. Environ Prog Sustainable Energy. e14217.
  • Rassaei F. 2023b. Biochar effects on rice paddy cadmium contaminated calcareous clay soil: a study on adsorption kinetics and cadmium uptake. Paddy Water Environ. 21(3):389–400. doi: 10.1007/s10333-023-00937-7.
  • Rassaei F. 2023c. Sugarcane bagasse biochar changes the sorption kinetics and rice (Oryza sativa L.) cadmium uptake in a paddy soil. Gesunde Pflanzen. 75(5):2101–2110. doi: 10.1007/s10343-023-00860-1.
  • Rassaei F. 2023d. Methane emissions and rice yield in a paddy soil: the effect of biochar and polystyrene microplastics interaction. Paddy Water Environ. 21(1):85–97. doi: 10.1007/s10333-022-00915-5.
  • Rassaei F. 2023e. The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted soils. Commun Soil Sci Plant Anal. 54(10):1426–1446. doi: 10.1080/00103624.2022.2146704.
  • Sabra A, Daayf F, Renault S. 2012. Differential physiological and biochemical responses of three Echinacea species to salinity stress. Sci Horti. 135:23–31. doi: 10.1016/j.scienta.2011.11.024.
  • Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, Prasad V. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies. Sci Total Environ. 764:144164. doi: 10.1016/j.scitotenv.2020.144164.
  • Saidimoradi D, Ghaderi N, Javadi T. 2019. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Sci Horticul. 256:108594. doi: 10.1016/j.scienta.2019.108594.
  • Seyedsadr S, Šípek V, Jačka L, Sněhota M, Beesley L, Pohořelý M, Kovář M, Trakal L. 2022. Biochar considerably increases the easily available water and nutrient content in low-organic soils amended with compost and manure. Chemosphere. 293:133586. doi: 10.1016/j.chemosphere.2022.133586.
  • Shi Y, Liu X, Zhang Q, Gao P, Ren J. 2020. Biochar and organic fertilizer changed the ammonia-oxidizing bacteria and archaea community structure of saline–alkali soil in the North China Plain. J Soils Sediments. 20(1):12–23. doi: 10.1007/s11368-019-02364-w.
  • Siedt M, Schäffer A, Smith KEC, Nabel M, Roß-Nickoll M, van Dongen JT. 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ. 751:141607. doi: 10.1016/j.scitotenv.2020.141607.
  • Singh M, Singh VP, Prasad SM. 2019. Nitrogen alleviates salinity toxicity in Solanum lycopersicum seedlings by regulating ROS homeostasis. Plant Physiol Biochem. 141:466–476. doi: 10.1016/j.plaphy.2019.04.004.
  • Tang Y, Li G, Iqbal B, Tariq M, Rehman A, Khan I, Du D. 2023. Soil nutrient levels regulate the effect of soil microplastics contamination on microbial element metabolism and carbon use efficiency. Ecotoxicol Environ Saf. 267:115640. doi: 10.1016/j.ecoenv.2023.115640.
  • Tavares DS, Fernandes TEK, Rita YL, Rocha DC, Sant’Anna-Santos BF, Gomes MP. 2021. Germinative metabolism and seedling growth of cowpea (Vigna unguiculata) under salt and osmotic stress. South Afr J Bot. 139:399–408. doi: 10.1016/j.sajb.2021.03.019.
  • Thordal-Christensen H, Zhang Z, Wei YD, Collinge DB. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11(6):1187–1194. doi: 10.1046/j.1365-313X.1997.11061187.x.
  • Ullah A, Zeng F, Tariq A, Asghar MA, Saleem K, Raza A, Naseer MA, Zhang Z, Noor J. 2022. Exogenous naphthaleneacetic acid alleviated alkalinity-induced morpho-physio-biochemical damages in Cyperus esculentus L. var. sativus Boeck. Front Plant Sci. 13:1018787. doi: 10.3389/fpls.2022.1018787.
  • Vasconcelos ACF, Chaves LHG, Gheyi HR, Fernandes JD, Tito GA. 2017. Crambe growth in a soil amended with biochar and under saline irrigation. Commun Soil Sci Plant Anal. 48(11):1291–1300. doi: 10.1080/00103624.2017.1341911.
  • Veljovic-Jovanovic S, Noctor G, Foyer CH. 2002. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem. 40(6–8):501–507. doi: 10.1016/S0981-9428(02)01417-1.
  • Wang J, Zhong XM, Lv XL, Shi ZS, Li FH. 2018. Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron. Photosynt. 56(4):1059–1068. doi: 10.1007/s11099-018-0816-6.
  • Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. 2020. Engineering salinity tolerance in plants: progress and prospects. Planta. 251(4):76. doi: 10.1007/s00425-020-03366-6.
  • Xie W, Chen Q, Wu L, Yang H, Xu J, Zhang Y. 2020. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: a 4-year field study. Soil Tillage Res. 198:104535. doi: 10.1016/j.still.2019.104535.
  • Xu X, Wang J, Tang Y, Cui X, Hou D, Jia H, Wang S, Guo L, Wang J, Lin A. 2023. Mitigating soil salinity stress with titanium gypsum and biochar composite materials: improvement effects and mechanism. Chemosphere. 321:138127. doi: 10.1016/j.chemosphere.2023.138127.
  • Yan SH, Gao YM, Tian MJ, Tian YQ, Li JS. 2021. Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agric Water Manage. 255:106995. doi: 10.1016/j.agwat.2021.106995.
  • Yang B, Li D, Yuan S, Jin L. 2021. Role of biochar from corn straw in influencing crack propagation and evaporation in sodic soils. Catena. 204:105457. doi: 10.1016/j.catena.2021.105457.
  • Yan S, Zhang S, Yan P, Aurangzeib M. 2022. Effect of biochar application method and amount on the soil quality and maize yield in Mollisols of Northeast China. Biochar. 4(1):56. doi: 10.1007/s42773-022-00180-z.
  • Zaid A, Wani SH. 2019. Reactive oxygen species generation, scavenging and signaling in plant defense responses. In: Bioactive molecules in plant defense. Cham: Springer. p. 111–132.
  • Zhang P, Liu L, Yang L, Zhao J, Li Y, Qi Y, Ma X, Cao L. 2023. Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi’an, China. Ecol Indicat. 147:110009. doi: 10.1016/j.ecolind.2023.110009.
  • Zhang X, Qu J, Li H, La S, Tian Y, Gao L. 2020. Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region. Geoderma. 363:114170. doi: 10.1016/j.geoderma.2019.114170.
  • Zhang W, Wang C, Lu T, Zheng Y. 2018. Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress. Plant Soil. 423(1–2):125–140. doi: 10.1007/s11104-017-3481-9.
  • Zhang G, Zhao Z, Zhu Y. 2020. Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil. J Clean Product. 256:120314. doi: 10.1016/j.jclepro.2020.120314.
  • Zhao X, Xie H, Zhao X, Zhang J, Li Z, Yin W, Yuan A, Zhou H, Manan S, Nazar M, et al. 2022. Combined inhibitory effect of Canada goldenrod invasion and soil microplastics on rice growth. Int J Environ Res Public Health. 19(19). doi: 10.3390/ijerph191911947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.