551
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Rhodococcus opacus PD630 on selenium phytoremediation by Brassica oleracea

, ORCID Icon & ORCID Icon

References

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL. 2015. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 166:603–608. doi: 10.1016/J.FOODCHEM.2014.06.071.
  • Brown TA, Shrift A. 1982. Selenium: toxicity and tolerance in higher plants. Biol Rev. 57(1):59–84. doi: 10.1111/j.1469-185X.1982.tb00364.x.
  • Di Canito A, Zampolli J, Orro A, D’Ursi P, Milanesi L, Sello G, Steinbüchel A, Di Gennaro P. 2018. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcus opacus R7. BMC Genomics. 19(1):587. doi: 10.1186/S12864-018-4965-6
  • Chi S, Xie W, Xu W, Zhou X, Chai Y, Zhao W, Li T, Li Y, Zhang, C, Yang. 2018. Differences in Selenium uptake and transport, and related gene expression in three Brassica vegetables. Appl Ecol Env Res. 16(3):2781–2793. doi: 10.15666/aeer/1603_27812793.
  • Cueva-Yesquén LG, Goulart MC, Attili de Angelis D, Nopper Alves M, Fantinatti-Garboggini F. 2020. Multiple plant growth-promotion traits in endophytic bacteria retrieved in the vegetative stage from passionflower. Front Plant Sci. 11:621740. doi: 10.3389/FPLS.2020.621740.
  • Das P, Sinha S, Mukherjee SK. 2014. Nickel Bioremediation Potential of Bacillus thuringiensis KUNi1 and Some Environmental Factors in Nickel Removal. Biorem J. 18(2):169–177. doi: 10.1080/108898682014889071.
  • Debnath R, Yadav A, Gupta VK, Singh BP, Handique PJ, Saikia R. 2016. Rhizospheric bacterial community of endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang. Front Plant Sci. 7:1345. doi: 10.3389/FPLS.2016.01345/BIBTEX.
  • Dungan RS, Yates SR, Frankenberger WT. 2003. Transformations of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol. 5(4):287–295. doi: 10.1046/J.1462-2920.2003.00410.X.
  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Borie F, Cornejo P, Mora ML. 2013. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci. 57(3):275–280. doi: 10.1016/j.jcs.2012.11.012.
  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, et al. 2015. Agromining: farming for metals in the future? Environ Sci Technol. 49(8):4773–4780. doi: 10.1021/es506031u.
  • Esringü A, Turan M. 2012. The roles of diethylenetriamine pentaacetate (DTPA) and ethylenediamine disuccinate (EDDS) in remediation of selenium from contaminated soil by brussels sprouts (Brassica oleracea var. Gemmifera). Water Air Soil Pollut. 223(1):351–362. doi: 10.1007/S11270-011-0863-0/TABLES/2.
  • Eswayah AS, Smith TJ, Gardiner PHE. 2016. Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol. 82(16):4848–4859. doi: 10.1128/AEM.00877-16.
  • Finnegan C, Ryan D, Enright A-M, Garcia-Cabellos G. 2017. Developing microbial Inocula to support biofuel crop cultivation on tributyltin contaminated marine sediments. JAEM. 5(2):47–56. doi: 10.12691/jaem-5-2-1.
  • Freeman JL, Marcus MA, Fakra SC, Devonshire J, McGrath SP, Quinn CF, Pilon-Smits EAH. 2012. Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by se-resistant, se-excluding wasp and beetle seed herbivores. PLOS One. 7(12):e50516. doi: 10.1371/journal.pone.0050516.
  • Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Front Microbiol. 10:1506. doi: 10.3389/fmicb.2019.01506.
  • Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, et al. 2011. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLOS Genet. 7(9):e1002219. doi: 10.1371/JOURNAL.PGEN.1002219.
  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 8:100203. doi: 10.1016/j.envadv.2022.100203.
  • Kavanagh L, Keohane J, Cabellos GG, Lloyd A, Cleary J. 2018. Induced plant accumulation of lithium. Geosci. 8(2):56. doi: 10.3390/geosciences8020056.
  • Kim SA, Kim OM, Rhee MS. 2013. Changes in microbial contamination levels and prevalence of foodborne pathogens in alfalfa (Medicago sativa) and rapeseed (Brassica napus) during sprout production in manufacturing plants. Lett Appl Microbiol. 56(1):30–36. doi: 10.1111/lam.12009.
  • Kotamraju A, Logan M, Lens PNL. 2023. Integrated bioprocess for Se(VI) remediation using duckweed: coupling selenate removal to biogas production. J Hazard Mater. 459:132134. doi: 10.1016/J.JHAZMAT.2023.132134.
  • Li J, Otero-Gonzalez L, Parao A, Tack P, Folens K, Ferrer I, Lens PNL, Du Laing G. 2021. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. Chemosphere. 281:130767. doi: 10.1016/J.CHEMOSPHERE.2021.130767.
  • Lima LW, Pilon-Smits EAH, Schiavon M. 2018. Mechanisms of selenium hyperaccumulation in plants: a survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj. 1862(11):2343–2353. doi: 10.1016/J.BBAGEN.2018.03.028.
  • Lin J, Peng T, Jiang L, Ni JZ, Liu Q, Chen L, Zhang Y. 2015. Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol. 7(3):664–676. doi: 10.1093/GBE/EVV022.
  • Mal J, Sinharoy A, Lens PNL. 2021. Simultaneous removal of lead and selenium through biomineralization as lead selenide by anaerobic granular sludge. J Hazard Mater. 420:126663. doi: 10.1016/J.JHAZMAT.2021.126663.
  • Mandal A, Thakur JK, Sahu A, Bhattacharjya S, Manna MC, Patra AK. 2017. Plant-microbe interaction for the removal of heavy metal from contaminated site. In: Choudhary, D, Varma, A, Tuteja, N., editors. Plant-Microbe Interaction: An Approach to Sustain Agriculture. Singapore: Springer. p. 227–247. doi: 10.1007/978-981-10-2854-0_11
  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI. 2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol. 8(9):R179. doi: 10.1186/gb-2007-8-9-r179.
  • El Mehdawi AF, Paschke MW, Pilon-Smits EAH. 2015. Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation. New Phytol. 206(1):231–242. doi: 10.1111/NPH.13164.
  • Nancharaiah YV, Lens PNL. 2015. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 79(1):61–80. doi: 10.1128/MMBR.00037-14.
  • Natasha N, Shahid M, Saleem M, Anwar H, Khalid S, Tariq TZ, Murtaza B, Amjad M, Naeem MA. 2020. A multivariate analysis of comparative effects of heavy metals on cellular biomarkers of phytoremediation using Brassica oleracea. Int J Phytoremediation. 22(6):617–627. doi: 10.1080/15226514.2019.1701980.
  • Navarro-León E, López-Moreno FJ, Rios JJ, Blasco B, Ruiz JM. 2020. Assaying the use of sodium thiosulphate as a biostimulant and its effect on cadmium accumulation and tolerance in Brassica oleracea plants. Ecotoxicol Environ Saf. 200:110760. doi: 10.1016/j.ecoenv.2020.110760.
  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. 2020. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 7(1):105–109. doi: 10.1080/26415275.2020.1796674.
  • Peyravi M, Jahanshahi M, Alimoradi M, Ganjian E. 2016. Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration. Bioprocess Biosyst Eng. 39(12):1803–1816. doi: 10.1007/s00449-016-1655-0.
  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M. 2009. Physiological functions of beneficial elements. Curr Opin Plant Biol. 12(3):267–274. doi: 10.1016/j.pbi.2009.04.009.
  • Pilon-Smits EAH, Winkel LHE, Lin Z-Q. 2017. Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects. Cham: Springer. doi: 10.1007/978-3-319-08807-5_4.
  • Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ. 2016. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact. 15(1):204. doi: 10.1186/S12934-016-0602-8
  • Presentato A, Piacenza E, Anikovskiy M, Cappelletti M, Zannoni D, Turner RJ. 2018. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N Biotechnol. 41:1–8. doi: 10.1016/J.NBT.2017.11.002.
  • Rosenfeld I, Beath OA. 1964. Selenium: Geobotany. Biochemistry, Toxicity, and Nutrition. New York: Academic Press.
  • Schiavon M, Pilon-Smits EAH. 2017. The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol. 213(4):1582–1596. doi: 10.1111/nph.14378.
  • Sinharoy A, Lens PNL. 2022. Biological selenate and selenite reduction by waste activated sludge using hydrogen as electron donor. J Environ Manage. 319:115745. doi: 10.1016/J.JENVMAN.2022.115745.
  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N. 1999. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian Mustard. Plant Physiol. 119(2):565–574. doi: 10.1104/PP.119.2.565.
  • Trippe RC, Pilon-Smits EAH. 2020. Selenium transport and metabolism in plants: phytoremediation and biofortification implications. J Hazard Mater. 404(Pt B):124178. doi: 10.1016/j.jhazmat.2020.124178.
  • White PJ. 2016. Selenium accumulation by plants. Ann Bot. 117(2):217–235. doi: 10.1093/aob/mcv180.
  • White PJ. 2017. The genetics of selenium accumulation by plants. In: Pilon-Smith E, Winkel L, Lin ZQ, editors. Selenium in Plants. Plant Ecophysiology. Vol 11. Cham: Springer. p. 143–163. doi: 10.1007/978-3-319-56249-0_9.
  • White PJ. 2018. Selenium metabolism in plants. Biochim Biophys Acta Gen Subj. 1862(11):2333–2342. doi: 10.1016/j.bbagen.2018.05.006.
  • Yaghoobizadeh F, Ardakani M, Zolgharnein H. 2017. Isolation, screening and identification of the best selenium- reducing bacteria and study on the sorption mechanism. EEB. 15:161–171. doi: 10.22364/eeb.15.15.
  • Yasin M, El-Mehdawi AF, Anwar A, Pilon-Smits EAH, Faisal M. 2015. Microbial-enhanced selenium and iron biofortification of Wheat (Triticum aestivum L.) - applications in phytoremediation and biofortification. Int J Phytoremediation. 17(1–6):341–347. doi: 10.1080/15226514.2014.922920.
  • Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MFS, Faisal M, Pilon-Smits EAH. 2014. Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil. 386(1–2):385–394. doi: 10.1007/s11104-014-2270-y.
  • Zand AD, Mühling KH. 2022. Phytoremediation capability and copper uptake of Maize (Zea mays L.) in copper contaminated soils. Pollut. 2(1):53–65. doi: 10.3390/pollutants2010007.
  • Zhu W, Zhu D, He J, Lian X, Chang Z, Guo R, Li X, Wang Y. 2022. Phytoremediation of soil co-contaminated with heavy metals (HMs) and tetracyclines: effect of the co-contamination and HM bioavailability analysis. J Soils Sediments. 22(7):2036–2047. doi: 10.1007/S11368-022-03206-Y
  • Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA. 2009. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 14(8):436–442. doi: 10.1016/j.tplants.2009.06.006.