287
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phytostabilization of fly ash from a coalmine in Botswana and biovalorisation of the recovered Napier grass (Pennisetum purpureum Schumach.)

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Antonkiewicz J. 2010. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of legume-grass mixture. J Elem. 15(3):435–443. doi: 10.5601/jelem.2010.15.3.435-443.
  • Antonkiewicz J, Kowalewska A, Mikołajczak S, Kołodziej B, Bryk M, Spychaj-Fabisiak E, Koliopoulos T, Babula J. 2022. Phytoextraction of heavy metals after application of bottom ash and municipal sewage sludge considering the risk of environmental pollution. J Environ Manage. 306:114517. doi: 10.1016/j.jenvman.2022.114517.
  • Ashworth DJ, Alloway BJ. 2007. Complexation of copper by sewage sludge-derived dissolved organic matter: effects on soil sorption behavior and plant uptake. Water Air Soil Pollut. 182(1-4):187–196. doi: 10.1007/s11270-006-9331-7.
  • Baba A, Gurdal G, Sengunalp F, Ozay O. 2008. Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess. 139(1-3):287–298. doi: 10.1007/s10661-007-9834-8.
  • Badran M, Morsy R, Elnimr T, Badran M, Soliman H. 2018. Assessment of wet acid digestion methods for ICP-MS determination of trace elements in biological samples by using Multivariate Statistical Analysis. J Elem. 23(1):179–189. doi: 10.5601/jelem.2016.21.3.1232.
  • Belhaj D, Elloumi N, Jerbi B, Zouari M, Abdallah FB, Ayadi H, Kallel M. 2016. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ Sci Pollut Res Int. 23(20):20168–20177. doi: 10.1007/s11356-016-7193-0.
  • Broda M, Yelle DJ, Serwańska K. 2022. Bioethanol production from lignocellulosic biomass—challenges and solutions. Molecules. 27(24):8717. doi: 10.3390/molecules27248717.
  • Cagnin L, Gronchi N, Basaglia M, Favaro L, Casella S. 2021. Selection of superior yeast strains for the fermentation of lignocellulosic steam-exploded residues. Front Microbiol. 12(2021):756032. doi: 10.3389/fmicb.2021.756032.
  • Couselo JL, Corredoira E, Vieitez AM, Ballester A. 2012. Plant tissue culture of fast-growing trees for phytoremediation research. In: Loyola-Vargas V, Ochoa-Alejo N, editors. Plant cell culture protocols. Methods in molecular biology. Totowa, NJ. Springer. p. 247–263. doi: 10.1007/978-1-61779-818-4_19.
  • Cutts G, Webster T, Grey T, Vencill W, Lee R, Tubbs R, Anderson W. 2011. Herbicide effect on Napiergrass (Pennisetum purpureum) control. Weed Sci. 59(2):255–262. doi: 10.1614/WS-D-10-00130.1.
  • Delimanto WO. 2020. Production of Bioethanol from Napier grass: Comparison in Pretreatment and Fermentation Methods. InIOP Conference Series: Earth and Environmental Science. (Vol. 520, No. 1, p. 012005). IOP Publishing. doi: 10.1088/1755-1315/520/1/012005.
  • Demirbas AH, Demirbas I. 2007. Importance of rural bioenergy for developing countries. Energy Convers Manag. 48(8):2386–2398. doi: 10.1016/j.enconman.2007.03.005.
  • Dwivedi A, Jain M. 2014. Fly ash – waste management and overview: a Review Fly ash – waste management and overview: a review. Recent. Res. Sci. Technol. 6:30–35.
  • Fang W, Wei Y, Liu J. 2016. Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics. J Hazard Mater. 310:1–10. doi: 10.1016/j.jhazmat.2016.02.025.
  • Gajaje K, Ultra VU, David PW, Rantong G. 2021. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Environ Sci Pollut Res Int. 28(16):20637–20649. doi: 10.1007/s11356-020-11905-7.
  • Gersztyn L, Karczewska A, Gałka B. 2013. Influence of pH on the solubility of arsenic in heavily contaminated soils/Wpływ pH na rozpuszczalność arsenu w glebach silnie zanieczyszczonych. Environ. Nat. Resour J. 24(3):7–11. doi: 10.2478/oszn-2013-0031.
  • Gusiatin ZM, Kulikowska D, Klik B. 2017. Suitability of humic substances recovered from sewage sludge to remedy soils from a former As mining area–a novel approach. J Hazard Mater. 338:160–166. doi: 10.1016/j.jhazmat.2017.05.019.
  • Juel MAI, Dey TK, Akash MI, Das KK. 2018. Heavy metals phytoremidiation potential of Napier grass (Pennisetum purpureum) cultivated in tannery sludge. Proceedings of the 4th International Conference on Civil Engineering for Sustainability Development (ICCESD); 2018 Feb 9-11. Khulna, Bangladesh. p. 9–11.
  • Kabir MS, Salam MA, Paul DN, Hossain MI, Rahman NM, Aziz A, Latif MA. 2016. Spatial variation of arsenic in soil, irrigation water, and plant parts: a microlevel study. The Scientific World Journal. 2016.2186069. doi: 10.1155/2016/2186069.
  • Kebede G, Feyissa F, Assefa G, Mengistu A, Minta M, Tsadik T. 2016. Agronomic performance and nutritive values of Napier grass (Pennisetum Purpureum (L.) Schumach) accessions in the Central Highland of Ethiopia. Int J Dev Res. 6:8717–8726.
  • Kim H, Li X. 2016. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. Horts. 51(8):1001–1009. doi: 10.21273/HORTSCI.51.8.1001.
  • Ko CH, Yu FC, Chang FC, Yang BY, Chen WH, Hwang WS, Tu TC. 2017. Bioethanol production from recovered Napier grass with heavy metals. J Environ Manage. 203(Pt 3):1005–1010. doi: 10.1016/j.jenvman.2017.04.049.
  • Kumar O, Singh SK, Latare AM, Yadav SN. 2018. Foliar fertilization of nickel affects growth, yield component and micronutrient status of barley (Hordeum vulgare L.) grown on low nickel soil. Archives of Agronomy and Soil Science. 64(10):1407-18. doi: 10.1080/03650340.2018.1438600.
  • Ma C, Ming H, Lin C, Naidu R, Bolan N. 2016. Phytoextraction of heavy metal from tailing waste using Napier grass. Catena. 136:74–83. doi: 10.1016/j.catena.2015.08.001.
  • Madhumita ROY, Roychowdhury R, Mukherjee P. 2018. Remediation of fly ash dumpsites through bioenergy crop plantation and generation: A review. Pedosphere. 28(4):561–580. doi: 10.1016/S1002-0160(18)60033-5.
  • Maiti D, Pandey VC. 2020. Metal remediation potential of naturally occurring plants growing on barren fly ash dumps. Environ Geochem Health. 43(4):1415–1426. doi: 10.1007/s10653-020-00679-z.
  • Majaule U, Dikinya O, Glaser B. 2022. Biochar and sewage sludge phosphorus fertilizer affects on phosphorus bioavailability and spinach (Spinacia oleracea L.) yields under no-till system in semi-arid soils. Int J Recyc Organ Waste Agric. 11(4):527–539. doi: 10.30486/ijrowa.2022.1927076.1231.
  • Malumbela G, Masuku EU. 2017. Resources and strategies towards the development of a sustainable construction materials industry in Botswana. Int J Arch Civil Construct Sci. 10.0(2):108–114 doi: 10.5281/zenodo.1339934.
  • Mohammed IY, Abakr YA, Mokaya R. 2019. Biofuel and valuable products recovery from Napier grass pre-processing: Process design and economic analysis. Journal of Environmental Chemical Engineering. 7(2):102962.doi: 10.1016/j.jece.2019.102962.
  • Mohapatra S, Ray RC, Ramachandran S. 2019. Bioethanol from biorenewable feedstocks: technology, economics, and challenges. InBioethanol production from food crops. pp. 3-27. Academic Press. doi: 10.1016/B978-0-12-813766-6.00001-1.
  • Motlhanka K, Lebani K, Garcia-Aloy M, Zhou N. 2022. Functional Characterization of Khadi yeasts isolates for selection of starter cultures. J Microbiol Biotechnol. 32(3):307–316. doi: 10.4014/jmb.2109.09003.
  • Negawo AT, Teshome A, Kumar A, Hanson J, Jones CS. 2017. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy. 7(2):28. doi: 10.3390/agronomy7020028.
  • Nwaefuna AE, Rumbold K, Boekhout T, Zhou N. 2021. Bioethanolic yeasts from dung beetles: tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnol Biofuels. 14(1):86. doi: 10.1186/s13068-021-01940-y.
  • Ogundele DT, Adio AA, Oludele OE. 2015. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. Journal of Environmental & Analytical Toxicology. 5(6):1. doi: 10.4172/2161-0525.1000334.
  • Osman NA, Roslan A, Ibrahim M, Hassan M. 2020. Potential use of Pennisetum purpureum for phytoremediation and bioenergy production: a mini review. APJMBB. 28(1):14–26. doi: 10.35118/apjmbb.2020.028.1.02.
  • Pakwan C, Jampeetong A, Brix H. 2020. Interactive effects of N form and P concentration on growth and tissue composition of hybrid Napier grass (Pennisetum purpureum × Pennisetum americanum). Plants (Basel). 9(8):1003. doi: 10.3390/plants9081003.
  • Pandey VC, Bajpai O, Singh N. 2016. Plant regeneration potential in fly ash ecosystem. Urban Forest Urban Green. 15:40–44. doi: 10.1016/j.ufug.2015.11.007.
  • Semumu T, Gamero A, Boekhout T, Zhou N. 2022. Evolutionary engineering to improve Wickerhamomyces subpelliculosus and Kazachstania gamospora for baking. World J Microbiol Biotechnol. 38(3):48. doi: 10.1007/s11274-021-03226-9.
  • Shah A, Niaz A, Ullah N, Rehman A, Akhlaq M, Zakir M, Suleman Khan M. 2013. Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry. 2013. 621265. doi: 10.1155/2013/621265.
  • Taupedi S, Ultra VU. 2022. Morupule fly ash as amendments in agricultural soil in Central Botswana. Environ Technol Innov. 28:102695. doi: 10.1016/j.eti.2022.102695.
  • Ultra VU. 2020. Fly ash and compost amendments and mycorrhizal inoculation enhanced the survival and growth of Delonix regia in Cu-Ni mine tailings. Philipp J Sci. 149(3):479–489. http://repository.biust.ac.bw/handle/123456789/381. doi: 10.56899/149.03.01.
  • Van der Merwe EM, Prinsloo LC, Mathebula CL, Swart HC, Coetsee E, Doucet FJ. 2014. Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications. Appl Surf Sci. 317:73–83. doi: 10.1016/j.apsusc.2014.08.080.
  • Van Reeuwijk LP. 2002. Procedures for soil analysis. (6th edition). Technical Paper No. 9. FAO/ISRIC. Wageningen, the Netherlands. p. 120. pp.
  • Wiangkham N, Prapagdee B. 2018. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel. Chemosphere. 201:511–518. doi: 10.1016/j.chemosphere.2018.03.039.
  • Wong JW, Li K, Fang M, Su DC. 2001. Toxicity evaluation of sewage sludges in Hong Kong. Environ Int. 27(5):373–380. doi: 10.1016/S0160-4120(01)00088-5.
  • Yadav VK, Gacem A, Choudhary N, Rai A, Kumar P, Yadav KK, Abbas M, Khedher NB, Awwad NS, Barik D, et al. 2022. Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications. Minerals. 12(12):1503. doi: 10.3390/min12121503.
  • Zhai M, Totolo O, Modisi MP, Finkelman RB, Kelesitse SM, Menyatso M. 2009. Heavy metal distribution in soils near Palapye, Botswana: an evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environ Geochem Health. 31(6):759–777. doi: 10.1007/s10653-009-9260-7.
  • Zierold K, Odoh C. 2020. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Rev Environ Health. 35(4):401–418. doi: 10.1515/reveh-2019-0039.