89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the reclamation of a contaminated site affected by the Fundão dam tailings trough phytoremediation and bioremediation

, , , &

References

  • [EMBRAPA] Brazilian Agricultural Research Corporation. 1997. Manual de métodos de análise do solo. Rio de Janeiro (Brazil): Centro Nacional de Pesquisa de Solos.
  • [IBAMA] Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis. 2015. Laudo Técnico Preliminar – Impactos ambientais decorrentes do desastre envolvendo o rompimento da barragem de Fundão, em Mariana, Minas Gerais. Brasillia, Brasil: Diretoria de Proteção Ambiental DIPRO & Coordenação Geral de Emergências Ambientais – CGEMA. p. 38.
  • Abbas G, Saqib M, Akhtar J, Murtaza G, Shahid M, Hussain A. 2016. Relationship between rhizosphere acidification and phytoremediation in two acacia species. J Soils Sediments. 16(4):1392–1399. doi:10.1007/s11368-014-1051-9.
  • Alexander M. 1971. Biochemical ecology of soil microorganisms. Annu Rev Microbiol. 25(1):361–392. doi:10.1146/annurev.mi.25.100171.002045.
  • Aloo BN, Makumba BA, Mbega ER. 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res. 219:26–39. doi:10.1016/j.micres.2018.10.011.
  • Andrades R, Guabiroba HC, Hora MSC, Martins RF, Rodrigues VLA, Vilar CC, Giarrizzo T, Joyeux J-C. 2020. Early evidences of niche shifts in estuarine fishes following one of the world’s largest mining dam disasters. Mar Pollut Bull. 154:111073. doi:10.1016/j.marpolbul.2020.111073.
  • Araujo AC, Viana PRM, Peres AEC. 2005. Reagents in iron ores flotation. Miner Eng. 18(2):219–224. doi:10.1016/j.mineng.2004.08.023.
  • Araujo DM, Yoshida MI, Carvalho CF. 2009. Colorimetric determination of ether amine greases utilized in the flotation of iron ore. J Anal Chem. 64(4):390–392. doi:10.1134/S1061934809040121.
  • Araujo DM, Yoshida MI, Takahashi JA, Carvalho CF, Stapelfeldt F. 2010. Biodegradation studies on fatty amines used for reverse flotation of iron ore. Int Biodeterior Biodegrad. 64(2):151–155. doi:10.1016/j.ibiod.2010.01.004.
  • Bååth E, Anderson TH. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 35(7):955–963. doi:10.1016/S0038-0717(03)00154-8.
  • Barbosa MA, Ferraz RLS, Coutinho ELM, Coutinho Neto AM, da Silva MS, Fernandes C, Rigobelo E. 2019. Multivariate analysis and modeling of soil quality indicators in long-term management systems. Sci Total Environ. 657:457–465. doi:10.1016/j.scitotenv.2018.11.441.
  • Bardgett RD, Hobbs PJ, Frostegård A. 1996. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fert Soils. 22(3):261–264. doi:10.1007/BF00382522.
  • Berg B. 2000. Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag. 133(1-2):13–22. doi:10.1016/S03781127(99)00294-7.
  • Blanco-García A, Lindig-Cisneros R. 2005. Incorporating restoration in sustainable forestry management: using pine-bark mulch to improve native species establishment on tephra deposits. Restor Ecol. 13(4):703–709. doi:10.1111/j.1526-100X.2005.00089.x.
  • Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37(8):911e917–911e917. doi:10.1139/o59-099.
  • Bossio DA, Scow KM. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acids profiles and substrate utilization patterns. Microb Ecol. 35(3):265–278. doi:10.1007/s002489900082.
  • Bowen GD. 1973. Mineral nutrition of ectomycorrhizae. In: Marks GC, Kozlowski TT, editors. Ectomycorrhizae: their ecology and physiology. New York: Academic Press. p. 151–205.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem. 72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3.
  • Brady NC, Weil RR. 2007. The nature and properties of soil. 14th ed. Upper Saddle River (NJ): Prentice Hall.
  • Bremner JM, Keeney DR. 1965. Exchangeable ammonium, nitrate and nitrite by steam distillation methods. In Black CA, editor. Methods of soil analysis: chemical and microbiological properties. Madison (WI): American Society of Agronomy. p. 595–730.
  • Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 159(6):567–584. doi:10.1078/0176-1617-0774.
  • Bronick CJ, Lal R. 2005. Soil structure and management: a review. Geoderma. 124(1–2):3–22. doi:10.1016/j.geoderma.2004.03.005.
  • Casida LE, Klein DA, Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98(6):371–376. doi:10.1097/00010694-196412000-00004.
  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 20(10):3177–3190. doi:10.1111/gcb.12629.
  • Cordeiro J, Gomes AR, Santos CHB, Rigobelo EC, Baptista MB, Moura PM, Scotti MR. 2022. Rehabilitation of the Doce River Basin after the Fundão dam collapse: what has been done, what can be done and what should be done? River Research & Apps. 38(2):194–208. doi:10.1002/rra.3894.
  • Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ. 2013. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol. 163(4):1859–1867. doi:10.1104/pp.113.225961.
  • De Beeck MO, Persson P, Tunlid A. 2021. Fungal extracellular polymeric substance matrices – Highly specialized microenvironments that allow fungi to control soil organic matter decomposition reactions. Soil Biol Biochem. 159:108304. doi:10.1016/j.soilbio.2021.108304.
  • Di Palma L, Ferrantelli P, Merli C, Petrucci E, Pitzolu I. 2007. Influence of soil organic matter on copper extraction from contaminated soil. Soil Sediment Contam. 16(3):323–335. doi:10.1080/15320380701285758.
  • Dick RP. 1997. Enzyme activities as integrative indicators of soil health. In: Parkhurst CE, Doube BM, Gupta, VVSR, editors. Biological indicators of soil health. Oxon (UK): CAB International. p. 121–156.
  • Dornbusch MJ, Limb RF, Tomlinson HAK, Daigh ALM, Sedivec KK. 2020. Evaluation of soil treatment techniques on remediated brine spill sites in semi-arid rangelands. J Environ Manage. 260:110100. doi:10.1016/j.jenvman.2020.110100.
  • Dzionek A, Wojcieszyńska D, Guzik U. 2016. Natural carriers in bioremediation: a review. Electron J Biotechnol. 23:28–36. doi:10.1016/j.ejbt.2016.07.003.
  • Hasini S, Iben O, Halima M, Azzouzi E, Douaik A, Azim K, Zouahri A. 2019. Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune -Marrakech (Morocco). Soil Tillage Res. 193:153–160. doi:10.1016/j.still.2019.06.003.
  • Fortes BCS, Teixeira MCV, da Costa SP, Wagner MH, Scotti MR. 2022. Post-disaster recovery plan for a rural settler’s community affected by the Fundão dam tailings in Brazil. J Rural Stud. 93:55–66. doi:10.1016/j.jrurstud.2022.05.013.
  • Gehron MJ, White DC. 1983. Sensitive assay of phospholipid glycerol in environmental samples. J Microbiol Methods. 1(1):23–32. doi:10.1016/0167-7012(83)90004-0.
  • Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc. 46(2):235–244. doi:10.1016/S0007-1536(63)80079-0.
  • Glenn EP, Jordan F, Waugh WJ. 2017. Phytoremediation of a nitrogen contaminated desert soil by native shrubs and microbial processes. Land Degrad Dev. 28(1):361–369. doi:10.1002/ldr.2502.
  • Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J. 1979. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural location of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. & Gerd.). New Phytol. 82(1):127–132. doi:10.1016/0048-4059(78)90017-6.
  • Gianinazzi-Pearson V, Gianinazzi S, editors. 1995. Protein and protein activities in endomycorrhizal symbiosis. In Hock B, Varma A, editors. Mycorrhiza: struc-ture, function, molecular biology and biotechnology. Heidelb: Springer Verlag. p. 251–266.
  • Gomes AR, Antão A, Santos AGP, Lacerda TJ, Medeiros MB, Saenz LAI, Alvarenga S, Santos CH, Rigobelo EC, Scotti MR. 2021. Rehabilitation of a Riparian Site contaminated by tailings from the Fundão Dam, Brazil, using different remediation strategies. Environ Toxicol Chem. 40(8):2359–2373. doi. org/10. 1002/etc.5075. doi:10.1002/etc.5075.
  • Gomes MP, Andrade ML, Nascentes CC, Scotti MR. 2014. Arsenic root sequestration by a tropical woody legume as affected by arbuscular mycorrhizal fungi and organic matter: implications for land reclamation. Water Air Soil Pollut. 225(4):1–12. doi:10.1007/s11270-014-1919-8.
  • Gomes MP, Marques RZ, Nascentes CC, Scotti MR. 2020. Synergistic effects between arbuscular mycorrhizal fungi and rhizobium isolated from as-contaminated soils on the as-phytoremediation capacity of the tropical woody legume Anadenanthera peregrina. Int J Phytoremediation. 22(13):1362–1371. doi:10.1080/15226514.2020.1775548
  • Jan SA, Rehman M, Gul A, Fayyaz M, Rehman AU, Jamil M. 2022. Combined application of two Bacillus species enhance phytoremediation potential of Brassica napus in an industrial metal-contaminated soil. Int J Phytoremediation. 24(6):652–665. doi:10.1080/15226514.2021.1962797.
  • Joner EJ, van Aarle IM, Vosatk M. 2000. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil. 226(2):199–210. doi:10.1023/A:1026582207192.
  • Kaur S, Suseela V. 2020. Unraveling arbuscular mycorrhiza-induced changes in plant primary and secondary metabolome. Metabolites. 10(8):335. doi:10.3390/metabo10080335.
  • Kemper WD, Rosenau RC. 1986. Aggregate stability and size distribution. In: Klute A, editor. Methods of soil analysis. Madison, WI: American Society of Agronomy. p. 499–509.
  • Klebercz O, Mayes WM, Ánton AD, Feigl V, Jarvis AP, Gruiz K. 2012. Ecotoxicity of fluvial sediments downstream of the Ajka red mud spill, Hungary. J Environ Monit. 14(8):2063–2071. doi:10.1039/c2em30155e.
  • Kinidi L, Salleh S. 2017. Phytoremediation of nitrogen as green chemistry for wastewater treatment system. Int J Chem Eng. 2017:1–12. doi:10.1155/2017/1961205.
  • Kimura AC, Scotti MR. 2016. Soil aggregation and arbuscular mycorrhizal fungi as indicators of slope rehabilitation in the São Francisco River Basin (Brazil). Soil Water Res. 11(2):114–123. doi:10.17221/23/2015-SWR.
  • Kimura A, Baptista MB, Scotti MR. 2017. Soil humic acid and aggregation as restoration indicators of a seasonally flooded riparian forest under buffer zone system. Ecol Eng. 98:146–156. doi:10.1016/j.ecoleng.2016.10.054.
  • Koide RT, Kabir Z. 2000. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148(3):511–517. doi:10.1046/j.1469-8137.2000.00776.x.
  • Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T. 2016. Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric. Ecosyst. Environ. 231:233–239. doi:10.1016/j.agee.2016.05.037.
  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 193(4):970–984. doi:10.1111/j.1469-8137.2011.03962.x.
  • Lax A, Diaz E, Castillo V, Albaladejo J. 1994. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Land Res & Man. 8(1):9–17. doi:10.1080/15324989309381374.
  • Lenoir I, Sahraoui ALH, Fontaine J. 2016. Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci. 67(5):624–640. doi:10.1111/ejss.12375.
  • Lipińska A, Kucharski J, Wyszkowska J. 2014. Activity of arylsulphatase in soil contaminated with polycyclic aromatic hydrocarbons. Water Air Soil Pollut. 225(9):2097. doi:10.1007/s11270-014-2097-4.
  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H. 2019. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater. 379:120813. doi:10.1016/j.jhazmat.2019.120813.
  • Meena VS, Maurya BR, Verma JP. 2014. Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res. 169(5-6):337–347. doi:10.1016/j.micres.2013.09.003.
  • Myszura-Dymek M, Żukowska G. 2023. The influence of sewage sludge composts on the enzymatic activity of reclaimed post-mining soil. Sustainability. 15(6):4749. doi:10.3390/su15064749.
  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 64(3):548–572. doi:10.1128/mmbr.64.3.548-572.2000.
  • Parmar P, Sindhu SS. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res. 3:25–31. doi:10.5923/j.microbiology.20130301.04.
  • Powlson D, Smith P, De Nobili M. 2013. Soil conditions and plant growth. In: Gregory PJ, Nortcliff S, editors. Soil organic matter. West Sussex (UK): Blackwell Publishing Ltd.
  • Quirk JP. 2001. The significance of the threshold and turbidity concentrations in relation to sodicity and microstructure. Soil Res. 39(6):1185–1217. doi:10.1071/SR00050.
  • Ramakrishna W, Yadav R, Li K. 2019. Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol. 138:10–18. doi:10.1016/j.apsoil.2019.02.019.
  • Rao MA, Sannino F, Nocerino G, Puglisi E, Gianfreda L. 2003. Effect of air-drying treatment on enzymatic activities of soils affected by anthropogenic activities. Biol Fertil Soil. 38(5):327–332. doi:10.1007/s00374-003-0660-z.
  • Ren CG, Kong CC, Bian B, Liu W, Li Y, Luo YM, Xie ZH. 2017. Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int J Phytoremediation. 19(9):789–797. doi:10.1080/15226514.2017.1284755.
  • Ridge EH, Rovira AD. 1971. Phosphatase activity of intact young wheat roots under sterile and nonsterile conditions. New Phytol. 70(6):1017–1026. doi:10.1111/j.1469-8137.1971.tb04583.x.
  • Rodríguez-Berbel N, Soria R, Ortega R, Bastida F, Miralles I. 2021. Quarry restoration treatments from recycled waste modify the physicochemical soil properties, omposition and activity of bacterial communities and priming effect in semi-arid areas. Sci Total Environ. 774:145693. doi:10.1016/j.scitotenv.2021.145693.
  • Rodríguez-Berbel N, Soria R, Ortega R, Lucas-Borja ME, Miralles I. 2022. Benefits of applying organic amendments from recycled wastes for fungal community growth in restored soils of a limestone quarry in a semiarid environment. Sci Total Environ. 806(Pt 3):151226. doi:10.1016/j.scitotenv.2021.151226.
  • Robbins CW. 1986. Sodic calcareous soil reclamation as affected by different amendments and crops. Agron J. 78(5):916–920. doi:10.2134/agronj1986.00021962007800050034x.
  • Sánchez-Castro I, Molina L, Prieto-Fernández MA, Segura A. 2023. Past, present and future trends in the remediation of heavy-metal contaminated soil - remediation techniques applied in real soil-contamination events. Helyon. Heliyon. 9(6):e16692. doi:10.1016/j.heliyon.2023.e16692.
  • Santolin CVA, Ciminelli VST, Nascentes CC, Windmöller CC. 2015. Distribution and environmental impact evaluation of metals in sediments from the Doce River Basin Brazil. Environ Earth Sci. 74(2):1235–1248. doi:10.1007/s12665-015-4115-2.
  • Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst. 4:136–151. doi:10.3389/fsufs.2020.00136.
  • Santos OSH, Avellar FC, Alves M, Trindade RC, Menezes MB, Ferreira MC, França GS, Cordeiro J, Sobreira FG, Yoshida IM, et al. 2019. Understanding the environmental impact of a mine dam rupture in Brazil: prospects for remediation. J Environ Qual. 48(2):439–449. doi:10.2134/jeq2018.04.0168.
  • Sharma SV, Arbach M, Roberts AA, Macdonald CJ, Groom M, Hamilton CJ. 2013. Biophysical features of bacillithiol, the glutathione surrogate of Bacillus subtilis and other firmicutes. Chembiochem. 14(16):2160–2168. doi:10.1002/cbic.201300404.
  • Shaykh MM, Roberts LW. 1974. A histochemical study of phosphatases in root apical meristems. Ann Bot. 38(1):165–174. doi:10.1093/oxfordjournals.aob.a084787.
  • Scotti MR, Gomes AR, Lacerda TJ, Ávila SS, Silva SL, Antão A, Santos AG, Medeiros MB, Alvarenga S, Santos CH, et al. 2020. Remediation of a Riparian Site in the Brazilian Atlantic forest reached by contaminated tailings from the collapsed Fundão Dam with native woody species. Integr Environ Assess Manag. 16(5):669–675. doi:10.1002/ieam.4272.
  • Spier CA, Oliveira SMB, Sial AN, Rios FJ. 2007. Geochemistry and genesis of the banded iron formations of the Caue formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Res. 152(3-4):170–206. doi:10.1016/j.precamres.2006.10.003.
  • Six J, Elliott ET, Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem. 32(14):2099–2103. doi:10.1016/S0038-0717(00)00179-6.
  • Silva AO, Guimarães AA, Lopez BDO, Zanchi CS, Vega CFP, Batista ÉR, de Souza Moreira FM, da Costa Souza FR, Pinto FA, Dos Santos JV, et al. 2021. Chemical, physical, and biological attributes in soils affected by deposition of iron ore tailings from the Fundão Dam failure. Environ Monit Assess. 193(8):462. doi:10.1007/s10661-021-09234-4.
  • Song F, Tian X, Fan X, He X. 2010. Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia. 102(1):20–26. doi:10.3852/09-047.
  • Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, Aaliya K. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 121:102–117. doi:10.1016/j.apsoil.2017.09.030.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1(4):301–307. doi:10.1016/0038-0717(69)90012-1.
  • Tabatabai MA, Bremner JM. 1970. Arysulfatase activity of soils. Soil Science Soc of Amer J. 34(2):225–229. doi:10.2136/sssaj1970.0361599500340002001.
  • Tabatabai S. 1994. MA. Soil enzymes. In: Weaver RW, AngleBottomley PS, Bezdicek D, Smith S, Tabatabai A, Wollum A. editors. Methods of soil analysis. part 2: microbiological and biochemical properties. inc. Madison: Soil Science Society of America. p. 778–833.
  • Tarafdar JC, Claassen N. 1988. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fert Soils. 5(4):308–312. doi:10.1007/BF00262137.
  • Tarafdar JC, Chhonkar PK. 1979. Phosphatase production by microorganisms isolated from diverse types of soils. Zentralbl Bakteriol Naturwiss. 134(2):119–124. doi:10.1016/S0323-6056(79)80037-3.
  • Trasar-Cepeda C, Leirós MC, Gil-Sotres F. 2008. Hydrolytic enzyme activities inagricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biol Biochem. 40(9):2146–2155. doi:10.1016/j.soilbio.2008.03.015.
  • Tiessen H, Cuevas E, Chacon P. 1994. The role of soil organic matter in sustaining soil fertility. Nature. 371(6500):783–785. doi:10.1038/371783a0.
  • Walker C, Mize W, McNabb HS. 1982. Populations of endogonaceus fungi at two populations in central Iowa. Can J Bot. 60(12):2518–2529. doi:10.1139/b82-305.
  • Wang F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: mechanisms and applications. Crit Rev Environ Sci Technol. 47(20):1901–1957. doi:10.1080/10643389.2017.1400853.
  • Wang F, Adams CA, Yang W, Sun Y, Shi Z. 2020. Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: implications for cleaner agricultural production. Crit Rev Environ Sci Technol. 50(15):1580–1612. doi:10.1080/10643389.2019.1665945.
  • Weng L, Temminghoff EJM, Van Riemsdijk WH. 2001. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol. 35(22):4436–4443. doi:10.1021/es010085j.
  • Wei L, Li Y, Zhu Z, Wang F, Liu X, Zhang W, Xiao M, Li G, Ding J, Chen J, et al. 2022. Soil health evaluation approaches along a reclamation consequence in Hangzhou Bay, China. Agric Ecosyst Environ. 337:108045. doi:10.1016/j.agee.2022.108045.
  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia. 40(1):51–62. doi:10.1007/BF00388810.
  • Wright SF, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161(9):575–586. doi:10.1097/00010694-199609000-00003.
  • Xie X, Pu L, Zhu M, Meadows M, Sun L, Wu T, Bu X, Xu Y. 2021. Differential effects of various reclamation treatments on soil characteristics: an experimental study of newly reclaimed tidal mudflats on the east China coast. Sci Total Environ. 768:144996. doi:10.1016/j.scitotenv.2021.144996.
  • Yadav R, Ror P, Rathore P, Kumar S, Ramakrishna W. 2021. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. J Appl Microbiol. 131(1):339–359. doi:https://doi.org/10.1111/jam.14951.
  • Zelles L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere. 35(1–2):275–294. doi:10.1016/S0045-6535(97)00155-0.
  • Zhao DL, Oosterhuis DM, Bednarz CW. 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynt. 39(1):103–109. doi:10.1023/A:1012404204910.
  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Soc of Amer J. 61(2):475–481. doi:10.2136/sssaj1997.03615995006100020015x.
  • Zhu JK. 2001. Plant salt tolerance. Trends Plant Sci. 6(2):66–71. doi:10.1016/s1360-1385(00)01838-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.