185
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Removal of malachite green from wastewater using date seeds as natural adsorbent; isotherms, kinetics, Thermodynamic, and batch adsorption process design

ORCID Icon, , , &

References

  • Abdel-Hamid SMS, Al-Qabandi OA, N A S E, Bassyouni M, Zoromba MS, Abdel-Aziz MH, Mira H, Elhenawy Y. 2019. Fabrication and characterization of microcellular polyurethane sisal biocomposites. Molecules. 24(24):4585. doi: 10.3390/molecules24244585.
  • Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Umar Y, Ahmad A. 2020. Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol. 155:730–739. doi: 10.1016/j.ijbiomac.2020.03.255.
  • Aghdasinia H, Asiabi HR. 2018. Adsorption of a cationic dye (methylene blue) by Iranian natural clays from aqueous solutions: equilibrium, kinetic and thermodynamic study. Environ Earth Sci. 77(5):218. doi: 10.1007/s12665-018-7342-5.
  • Aghdasinia H, Gholizadeh M, Hosseini SS. 2021. Adsorptive removal of basic yellow 2 onto reed stem and poplar leaf: a comprehensive study. Sustainable Chem Pharm. 24:100546. doi: 10.1016/j.scp.2021.100546.
  • Ali R, Aslam Z, Shawabkeh RA, Asghar A, Hussein IA. 2020. BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash. Turk J Chem. 44(2):279–295. doi: 10.3906/kim-1909-20.
  • Al-Saad K, El-Azazy M, Issa AA, Al-Yafie A, El-Shafie AS, Al-Sulaiti M, Shomar B. 2019. Recycling of date pits into a green adsorbent for removal of heavy metals: a fractional factorial design-based approach. Front Chem. 7:552. doi: 10.3389/fchem.2019.00552.
  • Aniagor CO, Elshkankery M, Fletcher AJ, Morsy OM, Abdel-Halim ES, Hashem A. 2021. Equilibrium and kinetic modeling of aqueous cadmium ion and activated carbon adsorption system. Water Conserv Sci Eng. 6(2):95–104. doi: 10.1007/s41101-021-00107-y.
  • Atef R, Aboeleneen NM, AbdelMonem NM. 2023. Preparation and characterization of low-cost nano-particle material using pomegranate peels for brilliant green removal. Int J Phytoremediation. 25(1):36–46. doi: 10.1080/15226514.2022.2056133.
  • Aydeniz-Güneşer B. 2022. Valorization of date palm (Phoenix dactylifera) wastes and by-products. In: Ramadan MF, Farag MA, editors. Mediterranean fruits bio-wastes: chemistry, functionality, and technological applications. Cham: springer International Publishing; p. 391–402.
  • Bichave MS, Kature AY, Koranne SV, Shinde RS, Gongle AS, Choudhari VP, Topare NS, Raut-Jadhav S, Bokil SA. 2023. Nano-metal oxides-activated carbons for dyes removal: a review. Mater Today Proc. 77:19–30. doi: 10.1016/j.matpr.2022.08.451.
  • Bijami A, Rezanejad F, Oloumi H, Mozafari H. 2020. Minerals, antioxidant compounds, and phenolic profile regarding date palm (Phoenix dactylifera L.) seed development. Sci Hortic. 262:109017. doi: 10.1016/j.scienta.2019.109017.
  • Bingül Z. 2022. Determination of affecting parameters on the removal of methylene blue dyestuff from aqueous solutions using natural clay: isotherm, kinetic, and thermodynamic studies. J Mol Struct. 1250:131729. doi: 10.1016/j.molstruc.2021.131729.
  • Birniwa AH, Abubakar AS, Mahmud HNME, Kutty SRM, Jagaba AH, Abdullahi SSA, Zango ZU. 2022. Application of agricultural wastes for cationic dyes removal from wastewater. In: Textile wastewater treatment: sustainable bio-nano materials and macromolecules. Vol. 1. Singapore: Springer Nature Singapore. p. 0 239–274.
  • Bonetto LR, Crespo JS, Guégan R, Esteves VI, Giovanela M. 2021. Removal of methylene blue from aqueous solutions using a solid residue of the apple juice industry: full factorial design, equilibrium, thermodynamics, and kinetics aspects. J Mol Struct. 1224:129296. doi: 10.1016/j.molstruc.2020.129296.
  • Brahmi L, Kaouah F, Boumaza S, Trari M. 2019. Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones. Appl Water Sci. 9(8):1–13. doi: 10.1007/s13201-019-1053-2.
  • Buema G, Lupu N, Chiriac H, Ciobanu G, Bucur RD, Bucur D, Favier L, Harja M. 2021. Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. J Mol Liq. 333:115932. doi: 10.1016/j.molliq.2021.115932.
  • Castillo-Suárez LA, Sierra-Sánchez AG, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA. 2023. A critical review of textile industry wastewater: green technologies for the removal of indigo dyes. Int J Environ Sci Technol. 20:1–38. doi: 10.1007/s13762-023-04810-2.
  • Das A, Bar N, Das SK. 2020. Pb (II) adsorption from aqueous solution by nutshells, green adsorbent: adsorption studies, regeneration studies, scale-up design, its effect on biological indicator and MLR modeling. J Colloid Interface Sci. 580:245–255. doi: 10.1016/j.jcis.2020.07.017.
  • Dhaif-Allah MA, Taqui SN, Syed UT, Syed AA. 2020. Kinetic and isotherm modeling for acid blue 113 dye adsorption onto low-cost nutraceutical industrial fenugreek seed spent. Appl Water Sci. 10(2):1–16. doi: 10.1007/s13201-020-1141-3.
  • El-Azazy M, El-Shafie AS, Al-Meer S, Al-Saad KA. 2020. Eco-structured adsorptive removal of tigecycline from wastewater: date pits’ biochar versus the magnetic biochar. Nanomaterials. 11(1):30. doi: 10.3390/nano11010030.
  • El-Mehalmey WA, Safwat Y, Bassyouni M, Alkordi MH. 2020. strong interplay between polymer surface charge and MOF cage chemistry in mixed-matrix membranes for water treatment applications. ACS Appl Mater Interfaces. 12(24):27625–27631. doi: 10.1021/acsami.0c06399.
  • Franca AS, Oliveira LS, Saldanha SA, Santos PI, Salum SS. 2010. Malachite green adsorption by mango (Mangifera indica L.) seed husks: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat. 19(1–3):241–248. doi: 10.5004/dwt.2010.1105.
  • Fouad K, Alalm MG, Bassyouni M, Saleh MY. 2020. A novel photocatalytic reactor for the extended reuse of W–TiO2 in the degradation of sulfamethazine. Chemosphere. 257:127270. doi: 10.1016/j.chemosphere.2020.127270.
  • Ghosh I, Kar S, Chatterjee T, Bar N, Das SK. 2021. Adsorptive removal of Safranin-O dye from aqueous medium using coconut coir and its acid-treated forms: adsorption study, scale-up design, MPR and GA-ANN modeling. Sustainable Chem Pharm. 19:100374. doi: 10.1016/j.scp.2021.100374.
  • Ghosh I, Kar S, Chatterjee T, Bar N, Das SK. 2021. Removal of methylene blue from aqueous solution using Lathyrus sativus husk: adsorption study, MPR, and ANN modeling. Process Saf Environ Prot. 149:345–361. doi: 10.1016/j.psep.2020.11.003.
  • Ghosh K, Bar N, Roymahapatra G, Biswas AB, Das SK. 2022. Adsorptive removal of toxic malachite green from its aqueous solution by Bambusa vulgaris leaves and its acid-treated form: DFT, MPR, and GA modeling. J Mol Liq. 363:119841. doi: 10.1016/j.molliq.2022.119841.
  • Hassan SS, Al-Ghouti MA, Abu-Dieyeh M, McKay G. 2020. Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. J Environ Chem Eng. 8(1):103593. doi: 10.1016/j.jece.2019.103593.
  • He Q, Ruan P, Miao Z, Wan K, Gao M, Li X, Huang S. 2021. Adsorption of direct yellow brown D3G from aqueous solution using loaded modified low-cost lignite: performance and mechanism. Environ Technol. 42(11):1642–1651. doi: 10.1080/09593330.2019.1675774.
  • Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Kumar BS. 2020. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. J Cleaner Prod. 272:122636. doi: 10.1016/j.jclepro.2020.122636.
  • Ilić M, Haegel FH, Lolić A, Nedić Z, Tosti T, Ignjatović IS, Linden A, Jablonowski ND, Hartmann H. 2022. Surface functional groups and degree of carbonization of selected chars from different processes and feedstock. PLOS One. 17(11):e0277365. doi: 10.1371/journal.pone.0277365.
  • Jawad AH, Abd Malek NN, Khadiran T, ALOthman ZA, Yaseen ZM. 2022. Mesoporous high-surface-area activated carbon from biomass waste via microwave-assisted-H3PO4 activation for methylene blue dye adsorption: an optimized process. Diamond Relat Mater. 128:109288. doi: 10.1016/j.diamond.2022.109288.
  • Jawad AH, Abdulhameed AS, Hanafiah MM, ALOthman ZA, Khan MR, Surip SN. 2021. Numerical desirability function for adsorption of methylene blue dye by sulfonated pomegranate peel biochar: modeling, kinetic, isotherm, thermodynamic, and mechanism study. Korean J Chem Eng. 38(7):1499–1509. doi: 10.1007/s11814-021-0801-9.
  • Jawad AH, Abdulhameed AS, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR. 2021. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chin J Chem Eng. 32:281–290. doi: 10.1016/j.cjche.2020.09.070.
  • Jawad AH, Abdulhameed AS. 2020. Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energ Ecol Environ. 5(6):456–469. doi: 10.1007/s40974-020-00177-z.
  • Jawad AH, Bardhan M, Islam MA, Islam MA, Syed-Hassan SSA, Surip SN, ALOthman ZA, Khan MR. 2020. Insights into the modeling, characterization, and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf Interfaces. 21:100688. doi: 10.1016/j.surfin.2020.100688.
  • Jawad AH, Mamat NH, Abdullah MF, Ismail K. 2017. Adsorption of methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study. DWT. 59:210–219. doi: 10.5004/dwt.2017.0097.
  • Jawad AH, Mohd Firdaus Hum NN, Abdulhameed AS, Mohd Ishak MA. 2022. Mesoporous activated carbon from grass waste via H3PO4-activation for methylene blue dye removal: modeling, optimization, and mechanism study. Int J Environ Analyt Chem. 102(17):6061–6077. doi: 10.1080/03067319.2020.1807529.
  • Jawad AH, Ramlah AR, Khudzir I, Sabar S. 2017. High surface area mesoporous activated carbon developed from coconut leaf by chemical activation with H3PO4 for adsorption of methylene blue. DWT. 74:326–335. doi: 10.5004/dwt.2017.20571.
  • Jawad AH, Razuan R, Appaturi JN, Wilson LD. 2019. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surf Interfaces. 16:76–84. doi: 10.1016/j.surfin.2019.04.012.
  • Jawad AH, Sabar S, Ishak MAM, Wilson LD, Ahmad Norrahma SS, Talari MK, Farhan AM. 2017. Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chem Eng Commun. 204(10):1143–1156. doi: 10.1080/00986445.2017.1347565.
  • Jawad AH, Saber SEM, Abdulhameed AS, Reghioua A, ALOthman ZA, Wilson LD. 2022. Mesoporous activated carbon from mangosteen (Garcinia mangostana) peels by H3PO4 assisted microwave: optimization, characterization, and adsorption mechanism for methylene blue dye removal. Diamond Relat Mater. 129:109389. doi: 10.1016/j.diamond.2022.109389.
  • Jawad AH, Sahu UK, Mastuli MS, ALOthman ZA, Wilson LD. 2022. Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave-assisted H3PO4. Biomass Conv Bioref. 14(1):577–591. doi: 10.1007/s13399-022-02423-2.
  • Jawad AH, Sauodi MH, Mastuli MS, Aouda MA, Radzun KA. 2018. Pomegranate peels collected from fresh juice shops as a renewable precursor for high surface area activated carbon with potential application for methylene blue adsorption. DWT. 124:287–296. doi: 10.5004/dwt.2018.22725.
  • Jawad AH, Surip SN. 2022. Upgrading low-rank coal into mesoporous activated carbon via microwave process for methylene blue dye adsorption: Box Behnken Design and mechanism study. Diamond Relat Mater. 127:109199. doi: 10.1016/j.diamond.2022.109199.
  • Jia X, Wang X, Zhang L, Du S, Wang C, Zhang Z. 2020. A regenerated adsorbent by ultraviolet irradiation based on viscose fiber cloth/Cu–BTEC MOFs for methylene blue adsorption. Chem Pap. 74(11):4135–4139. doi: 10.1007/s11696-020-01219-w.
  • Joshi P, Srivastava A, Srivastava PC. 2021. Pine needle biochar as a low-cost adsorbent for removal of malachite green dye from wastewater. Indian J Chem Technol. 28:180–187.
  • Kalita S, Pathak M, Devi G, Sarma HP, Bhattacharyya KG, Sarma A, Devi A. 2017. Utilization of Euryale ferox salisbury seed shell for removal of basic fuchsin dye from water: equilibrium and kinetics investigation. RSC Adv. 7(44):27248–27259. doi: 10.1039/C7RA03014B.
  • Kamdod AS, Kumar MVP. 2022. Adsorption of methylene blue, methyl orange, and crystal violet on microporous coconut shell activated carbon and its composite with chitosan: isotherms and kinetics. J Polym Environ. 30(12):5274–5289. doi: 10.1007/s10924-022-02597-w.
  • Lafi R, Montasser I, Hafiane A. 2019. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorp Sci Technol. 37(1-2):160–181. doi: 10.1177/0263617418819227.
  • Leng L, Yuan X, Huang H, Shao J, Wang H, Chen X, Zeng G. 2015a. Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Appl Surf Sci. 346:0 223–231. doi: 10.1016/j.apsusc.2015.04.014.
  • Leng L, Yuan X, Zeng G, Shao J, Chen X, Wu Z, Wang H, Peng X. 2015b. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (malachite green) adsorption. Fuel. 155:77–85. doi: 10.1016/j.fuel.2015.04.019.
  • Li X, Shi J, Luo X. 2022. Enhanced adsorption of rhodamine B from water by Fe-N co-modified biochar: preparation, performance, mechanism, and reusability. Bioresour Technol. 343:126103. doi: 10.1016/j.biortech.2021.126103.
  • Lin KY, Lee WD. 2016. Highly efficient removal of malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite. Appl Surf Sci. 361:114–121. doi: 10.1016/j.apsusc.2015.11.108.
  • Lin ZZ, Zhang HY, Peng AH, Lin YD, Li L, Huang ZY. 2016. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers. Food Chem. 200:32–37. doi: 10.1016/j.foodchem.2016.01.001.
  • Lütke SF, Igansi AV, Pegoraro L, Dotto GL, Pinto LA, Cadaval TR.Jr, 2019. Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption. J Environ Chem Eng. 7(5):103396. doi: 10.1016/j.jece.2019.103396.
  • Mahmoudi K, Hamdi N, Srasra E. 2014. Preparation and characterization of activated carbon from date pits by chemical activation with zinc chloride for methyl orange adsorption. J Mater Environ Sci. 5(6):1758–1769.
  • Mansour RA, Aboeleneen NM, Abdelmonem NM. 2018. Adsorption of cationic dye from aqueous solutions by date pits: equilibrium, kinetic, thermodynamic studies, and batch adsorber design. Int J Phytoremediation. 20(10):1062–1074. doi: 10.1080/15226514.2018.1460306.
  • Mansour RA, Atef R, Elazaby RR, Zaatout AA. 2020. Experimental study on the adsorption of Cr+ 6 and Ni+ 2 from aqueous solution using low-cost natural material. Int J Phytoremediation. 22(5):508–517. doi: 10.1080/15226514.2019.1683716.
  • Mansour RAEG, Simeda MG, Zaatout AA. 2021. Removal of brilliant green dye from synthetic wastewater under batch mode using chemically activated date pit carbon. RSC Adv. 11(14):7851–7861. doi: 10.1039/d0ra08488c.
  • Maryanti RINA, Nandiyanto ABD, Manullang TIB, Hufad A, Sunardi S. 2020. Adsorption of dye on carbon microparticles: physicochemical properties during adsorption, adsorption isotherm and education for students with special needs. JSM. 49(12):2977–2988. doi: 10.17576/jsm-2020-4912-09.
  • Mostafapour FK, Yilmaz M, Mahvi AH, Younesi A, Ganji F, Balarak D. 2022. Adsorptive removal of tetracycline from aqueous solution by surfactant-modified zeolite: equilibrium, kinetics, and thermodynamics. DWT. 247:216–228. doi: 10.5004/dwt.2022.27943.
  • Moumen A, Belhocine Y, Sbei N, Rahali S, Ali FAM, Mechati F, Hamdaoui F, Seydou M. 2022. Removal of malachite green dye from aqueous solution by catalytic wet oxidation technique using Ni/Kaolin as catalyst. Molecules. 27(21):7528. doi: 10.3390/molecules27217528.
  • Musawwa MM, Fajriati A, Sahroni I, Said A. 2022. Preparation of low-cost adsorbent based on mango leaf (Mangefira Indica L) biomass for methylene blue (MB) adsorption. EKSAKTA. 3(1):17–24. doi: 10.20885/EKSAKTA.vol3.iss1.art3.
  • Nanthamathee C, Dechatiwongse P. 2021. Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues. Mater Chem Phys. 258:123924. doi: 10.1016/j.matchemphys.2020.123924.
  • Nethaji S, Sivasamy A, Thennarasu G, Saravanan S. 2010. Adsorption of malachite green dye onto activated carbon derived from Borassus aethiopum flower biomass. J Hazard Mater. 181(1–3):271–280. doi: 10.1016/j.jhazmat.2010.05.008.
  • Opia CF, Obinna NV, Chizoruo IF, Obinna IB. 2023. Batch adsorption of malachite green dye from aqueous solution using sawdust of Swietenia macrophylla (mahogany wood). World News Nat Sci. 50:222–246.
  • Oskui FN, Aghdasinia H, Sorkhabi MG. 2019. Adsorption of Cr (III) using an Iranian natural nano clay: applicable to tannery wastewater: equilibrium, kinetic, and thermodynamic. Environ Earth Sci. 78(4):1–14. doi: 10.1007/s12665-019-8104-8.
  • Pakdel PM, Peighambardoust SJ, Arsalani N, Aghdasinia H. 2022. Safranin-O cationic dye removal from wastewater using carboxymethyl cellulose-grafted-poly (acrylic acid-co-itaconic acid) nanocomposite hydrogel. Environ Res. 212(Pt B):113201. doi: 10.1016/j.envres.2022.113201.
  • Peng X, Yan Z, Cheng X, Li Y, Wang A, Chen L. 2019. Quaternary ammonium-functionalized rice straw hydrochar as efficient adsorbents for methyl orange removal from aqueous solution. Clean Techn Environ Policy. 21(6):1269–1279. doi: 10.1007/s10098-019-01703-2.
  • Qi X, Tong X, Pan W, Zeng Q, You S, Shen J. 2021. Recent advances in polysaccharide-based adsorbents for wastewater treatment. J Cleaner Prod. 315:128221. doi: 10.1016/j.jclepro.2021.128221.
  • Rajoriya S, Saharan VK, Pundir AS, Nigam M, Roy K. 2021. Adsorption of methyl red dye from aqueous solution onto eggshell waste material: kinetics, isotherms and thermodynamic studies. Curr Res Green Sustain Chem. 4:100180. doi: 10.1016/j.crgsc.2021.100180.
  • Santhi T, Manonmani S, Smitha T. 2010. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. J Hazard Mater. 179(1–3):178–186. doi: 10.1016/j.jhazmat.2010.02.076.
  • Sarma GK, Sen Gupta S, Bhattacharyya KG. 2019. Removal of hazardous basic dyes from aqueous solution by adsorption onto kaolinite and acid-treated kaolinite: kinetics, isotherm, and mechanistic study. SN Appl Sci. 1(3):1–15. doi: 10.1007/s42452-019-0216-y.
  • Shaikhiev IG, Kraysman NV, Sverguzova SV. 2021. Review of almond (Prunus Dulcis) shell used to remove pollutants from aquatic environments. Biointerface Res Appl Chem. 11(6):14866.
  • Simón D, Gass S, Palet C, Cristóbal A. 2021. Disposal of wooden wastes used as heavy metal adsorbents as components of building bricks. J Build Eng. 40:102371. doi: 10.1016/j.jobe.2021.102371.
  • Simón D, Palet C, Costas A, Cristóbal A. 2022. Agro-industrial waste as potential heavy metal adsorbents and subsequent safe disposal of spent adsorbents. Water. 14(20):3298. doi: 10.3390/w14203298.
  • Soodmand AM, Aghdasinia H, Farshchi ME, Khorram S, Gholizadeh M. 2022. Chemical activation and cold plasma surface modification of olefin plant waste pyrolytic coke and its effectiveness for elimination of an azo dye from aqueous solutions. Diamond Relat Mater. 128:109297. doi: 10.1016/j.diamond.2022.109297.
  • Sorkhabi MG, Aghdasinia H, Oskui FN, Karimi A, Golizadeh M. 2021. Simultaneous adsorption of chromium and acidic dye from leather tannery model wastewater using a novel modified nano clay. Environ Earth Sci. 80(24):1–17. doi: 10.1007/s12665-021-10120-y.
  • Sorour FH, Marouf YM, Abd-ElMonem NM, Aboeleneen NM, Mansour RA. 2023. Raw sawdust utilization for the removal of acid red57 and basic fuchsin dyes from aqueous solution: equilibrium, kinetics, and thermodynamic investigation. Int J Phytoremediation. 1–15. Advanced Online Publication. doi: 10.1080/15226514.2023.2259999.
  • Surkatti R, Ibrahim MH, El-Naas MH. 2021. Date pits activated carbon as an effective adsorbent for water treatment. In: Núñez-Delgado A, editors. Sorbents materials for controlling environmental pollution. Amsterdam, The Netherlands: Elsevier; p. 135–161.
  • Swan NB, Zaini MAA. 2019. Adsorption of malachite green and congo red dyes from water: recent progress and future outlook. Ecol Chem Eng. 26(1):119–132. doi: 10.1515/eces-2019-0009.
  • Tu Y, Feng P, Ren Y, Cao Z, Wang R, Xu Z. 2019. Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel. 238:34–43. doi: 10.1016/j.fuel.2018.10.085.
  • Vargas-Rodríguez YM, Obaya A, García-Petronilo JE, Vargas-Rodríguez GI, Gómez-Cortés A, Tavizón G, Chávez-Carvayar JA. 2021. Adsorption studies of aqueous solutions of methyl green for halloysite nanotubes: kinetics, isotherms, and thermodynamic parameters. AJN. 9(1):1–11. doi: 10.12691/ajn-9-1-1.
  • Xu Y, Wang Q, Ding Z. 2022. Synthesis of superparamagnetic Fe3O4 nano-adsorbent using an energy-saving and pollution-reducing strategy for the removal of xylenol orange dye in water. Energies. 15(19):7378. doi: 10.3390/en15197378.
  • Yadav K, Jagadevan S. 2021. Influence of torrefaction and pyrolysis on engineered biochar and its applicability in defluoridation: insight into adsorption mechanism, batch adsorber design, and artificial neural network modeling. J Anal Appl Pyrolysis. 154:105015. doi: 10.1016/j.jaap.2021.105015.
  • Yahmed NB, Dauptain K, Lajnef I, Carrere H, Trably E, Smaali I. 2021. New sustainable bioconversion concept of date by-products (Phoenix dactylifera L.) to biohydrogen, biogas, and date syrup. Int J Hydrogen Energy. 46(1):297–305. doi: 10.1016/j.ijhydene.2020.09.203.
  • Yönten V, Sanyürek NK, Kivanç MR. 2020. A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low-cost activated carbon prepared from Vitis vinifera L. Surf Interfaces. 20:100529. doi: 10.1016/j.surfin.2020.100529.
  • Zhang H, Tang Y, Liu X, Ke Z, Su X, Cai D, Wang X, Liu Y, Huang Q, Yu Z. 2011. Improved adsorptive capacity of pine wood decayed by fungi Poria cocos for removal of malachite green from aqueous solutions. Desalination. 274(1-3):97–104. doi: 10.1016/j.desal.2011.01.077.
  • Zhang H, Zhang F, Huang Q. 2017. Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Adv. 7(10):5790–5799. doi: 10.1039/C6RA27782A.
  • Zhang J, Zhao Y, Wu S, Jia G, Cui X, Zhao P, Li Y. 2022. Enhanced adsorption of malachite green on hydroxyl functionalized coal: behaviors and mechanisms. Process Saf Environ Prot. 163:48–57. doi: 10.1016/j.psep.2022.04.072.
  • Zhao Q, Wei J. 2020. Zero-waste recycling method for textile dyeing sludge by magnetizing roasting–magnetic separation process and ceramic filter preparation. Chem Pap. 74(12):4389–4399. doi: 10.1007/s11696-020-01249-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.