77
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Metal toxicity in Bryum coronatum Schwaegrichen: impact on chlorophyll content, lamina cell structure, and metal accumulation

, &

References

  • Ajintaiyasil P. 2017. Diversity of mosses in Phu Kradueng National Park, Loei Province, M.Sc. in Botany. Bangkok, Thailand: Chulalongkorn University.
  • Ali J, Khan E. 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicol. Environ. Chem. 100(1):6–19. doi:10.1080/02772248.2017.1413652.
  • Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U. 2012. A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol. 169(15):1489–1500. doi:10.1016/j.jplph.2012.06.002.
  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12:643972. doi:10.3389/fphar.2021.643972.
  • Balashouri P. 1995. Effect of zinc on germination, growth and pigment content and phytomass of Vigna radiata and Sorghum bicolor. J. Ecobiol. 7:109–114.
  • Barceló J, Vázquez MD, Poschenrieder C. 1988. Structural and ultrastructural disorders in cadmium‐treated bush bean plants (Phaseolus vulgaris L.). New Phytol. 108(1):37–49. doi:10.1111/j.1469-8137.1988.tb00202.x.
  • Basile A, Sorbo S, Pisani T, Paoli L, Munzi S, Loppi S. 2012. Bioacumulation and ultrastructural effects of Cd, Cu, Pb and Zn in the moss Scorpiurum circinatum (Brid.) Fleisch. & Loeske. Environ Pollut. 166:208–211. doi:10.1016/j.envpol.2012.03.018.
  • Bechaieb R, Ben Akacha A, Gérard H. 2016. Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chem. Phys. Lett. 663:27–32. doi:10.1016/j.cplett.2016.09.053.
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants. New Phytol. 173(4):677–702. doi:10.1111/j.1469-8137.2007.01996.x.
  • Capozzi F, Sorrentino MC, Di Palma A, Mele F, Arena C, Adamo P, Spagnuolo V, Giordano S. 2020. Implication of vitality, seasonality and specific leaf area on PAH uptake in moss and lichen transplanted in bags. Ecol. Indic. 108:105727. doi:10.1016/j.ecolind.2019.105727.
  • Castello M. 2007. A comparison between two moss species used as transplants for airborne trace element biomonitoring in NE Italy. Environ Monit Assess. 133(1–3):267–276. doi:10.1007/s10661-006-9579-9.
  • Cherif J, Derbel N, Nakkach M, von Bergmann H, Jemal F, Lakhdar ZB. 2012. Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. J Photochem Photobiol B. 111:9–16. doi:10.1016/j.jphotobiol.2012.03.002.
  • Crooks V. 2021. Bryophytes: tiny plants in a big changing world [accessed 20 July 2023]. https://stri.si.edu/story/bryophytes.
  • Dai H, Wei Y, Zhang Y, Gao P, Chen J, Jia G, Yang T, Feng S, Wang C, Wang Y, et al. 2012. Influence of photosynthesis and chlorophyll synthesis on Cd accumulation in Populus× canescens. J. Food Agri. Environ. 10(1 part 2):1020–1023. doi:10.1234/4.2012.2864.
  • Ediene V, Umoetok S. 2017. Concentration of heavy metals in soils at the municipal dumpsite in calabar metropolis. AJEE. 3(2):1–11. doi:10.9734/AJEE/2017/34236.
  • Farooqi ZUR, Hussain MM, Ayub MA, Qadir AA, Ilic P. 2022. Potentially toxic elements and phytoremediation: opportunities and challenges. Phytoremediation. 19–36. doi:10.1016/B978-0-323-89874-4.00020-0.
  • Favas PJC, Pratas J, Rodrigues N, D’Souza R, Varun M, Paul MS. 2018. Metal(loid) accumulation in aquatic plants of a mining area: potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere. 194:158–170. doi:10.1016/j.chemosphere.2017.11.139.
  • Figueroa JA, Stiner CA, Radzyukevich TL, Heiny JA. 2016. Metal ion transport quantified by ICP-MS in intact cells. Sci Rep. 6(1):20551. doi:10.1038/srep20551.
  • Glime JM, Keen RE. 1984. The importance of bryophytes in a man-centered world. J. Hattori Bot. Lab. 55:133–146.
  • González AG, Pokrovsky OS. 2014. Metal adsorption on mosses: toward a universal adsorption model. J Colloid Interface Sci. 415:169–178. doi:10.1016/j.jcis.2013.10.028.
  • Govindapyari H, Leleeka M, Nivedita M, Uniyal L. 2010. Bryophytes: indicators and monitoring agents of pollution. NeBIO. 1:35–41.
  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf. 211:111887. 111887. doi:10.1016/j.ecoenv.2020.111887.
  • Haider S, Kanwal S, Uddin F, Azmat R. 2006. Phytotoxicity of Pb: II. changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pakistan J of Biological Sciences. 9(11):2062–2068. 9doi:10.3923/pjbs.2006.2062.2068.
  • He C, Zhang Z, Wang Z, Shi K, Wu Q, Wang D. 2021. Bioindication of heavy metals using bryophyte communities in the Songtao manganese carbonate ore region, China. Preprint. doi:10.21203/rs.3.rs-202426/v1.
  • Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N. 2011. Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol. 192(2):428–436. doi:10.1111/j.1469-8137.2011.03814.x.
  • Hu H, Sparks D. 1991. Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ‘Stuart’ pecan. HortSci. 26(3):267–268. doi:10.21273/HORTSCI.26.3.267.
  • Huihui Z, Xin L, Zisong X, Yue W, Zhiyuan T, Meijun A, Yuehui Z, Wenxu Z, Nan X, Guangyu S. 2020. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol Environ Saf. 195:110469. doi:10.1016/j.ecoenv.2020.110469.
  • Ingerpuu N. 2002. Bryophyte diversity and vascular plants [PhD thesis] (Plant Ecology). Estonia: University of Tartu.
  • Jain M, Pal M, Gupta P, Gadre R. 2007. Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: role of 2-oxoglutarate. Indian J. Exper. Biol. 45:385–389.
  • Jiang Y, Zhang X, Hu R, Zhao J, Fan M, Shaaban M, Wu Y. 2020. Urban atmospheric environment quality assessment by naturally growing bryophytes in Central China. IJERPH. 17(12):4537. doi:10.3390/ijerph17124537.
  • Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H. 2020. Probing the role of the chloroplasts in heavy metal tolerance and accumulation in Euglena gracilis. Microorganisms. 8(1):115. doi:10.3390/microorganisms8010115.
  • Krzesłowska M. 2010. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant. 33(1):35–51. doi:10.1007/s11738-010-0581-z.
  • Liu J, Qu W, Kadiiska MB. 2009. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 238(3):209–214. doi:10.1016/j.taap.2009.01.029.
  • Lu D, Zhang ZH, Wang ZH. 2021. Heavy metal uptake by bryophytes and vascular plants in a maganese carbonate slag field, China. Plant Biol (Stuttg). 24(2):380–386. doi:10.1111/plb.13375.
  • Mandzhieva S, Chaplygin V, Chernikova N, Fedorenko A, Voloshina M, Minkina T, Rajput VD, Elinson M, Wong MH. 2022. Responses of spring barley to Zn- and Cd-induced stress: morphometric analysis and cytotoxicity assay. Plants (Basel). 11(23):3332. doi:10.3390/plants11233332.
  • Maresca V, Bellini E, Landi S, Capasso G, Cianciullo P, Carraturo F, Pirintsos S, Sorbo S, Sanità di Toppi L, Esposito S, et al. 2022. Biological responses to heavy metal stress in the moss Leptodictyum riparium (Hedw.) Warnst. Ecotoxicol Environ Saf. 229:113078. doi:10.1016/j.ecoenv.2021.113078.
  • Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P. 2019. Heavy metal contamination: an alarming threat to environment and human health. Environmental biotechnology: for sustainable future. 103–125. doi:10.1007/978-981-10-7284-0_5.
  • Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker MU, Osman H, Alhumaydhi FA, et al. 2022. Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Uni Sci. 34(3):101865. 101865 doi:10.1016/j.jksus.2022.101865.
  • Myśliwa-Kurdziel B, Strzałka K. 2002. Influence of metals on biosynthesis of photosynthetic pigments. In: Prasad MNV, Strzałka K, editors. Physiology and biochemistry of metal toxicity and tolerance in plants. Dordrecht: Springer. p. 201–227. doi:10.1007/978-94-017-2660-3_8.
  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W. 2011. Insights into cadmium induced physiological and ultra‐structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater. 186(1):565–574. doi:10.1016/j.jhazmat.2010.11.037.
  • Ohki K. 1976. Effect of zinc nutrition on photosynthesis and carbonic anhydrase activity in cotton. Physiol Plant. 38(4):300–304. doi:10.1111/j.1399-3054.1976.tb04007.x.
  • Pachana K, Wattanakornsiri A, Nanuam J. 2010. Heavy metal transport and fate in the environmental compartments. NU Sci J. 7:1–11.
  • Pakarinen P, Rinne RJK. 1979. Growth rates and heavy metal concentrations of five moss species in paludified spruce forests. Lindbergia. 5:77–83.
  • Parekh D, Puranik RM, Srivastava HS. 1990. Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochem Physiol Pflanz. 186(4):239–242. doi:10.1016/S0015-3796(11)80078-8.
  • Parmar P, Kumari N, Sharma V. 2013. Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud. 54(1):45. doi:10.1186/1999-3110-54-45.
  • Petschinger K, Adlassnig W, Sabovljevic MS, Lang I. 2021. Lamina cell shape and cell wall thickness are useful indicators for metal tolerance – An example in bryophytes. Plants. 10(2):274. doi:10.3390/plants10020274.
  • Phaenark C, Niamsuthi A, Paejaroen P, Chunchob S, Cronberg N, Sawangproh W. 2022. Comparative toxicity of heavy metals Cd, Zn, and Pb to three acrocarpous moss species using chlorophyll contents. Trends Sci. 20(2):4287. doi:10.48048/tis.2023.4287.
  • Printarakul N, Adulkittichai K, Meeinkuirt W. 2022. Effects of copper accumulation on growth and development of Scopelophila cataractae grown in vitro. Ecotoxicol Environ Saf. 245:114127. doi:10.1016/j.ecoenv.2022.114127.
  • Puspita AD, Santoso A, Yulianto B. 2013. Studi akumulasi logam timbal (Pb) dan efeknya terhadap kandungan klorofil daun mangrove Rhizophora mucronata. J Mar Res. 3:44–53.
  • Rachna P. 2019. Effects of heavy metals on morphology of the moss Anoectangium clarum. Int J Phys Appl Sci. 6:29–35.
  • Rau S, Miersch J, Neumann D, Weber E, Krauss GJ. 2007. Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environ Exper Bot. 59(3):299–306. doi:10.1016/j.envexpbot.2006.03.001.
  • Rocchetta I, Leonardi PI, Amado Filho GM, del Carmen RM, Conforti V. 2007. Ultrastructure and X-ray microanalysis of Euglena gracilis (Euglenophyta) under chromium stress. Phycologia. 46(3):300–306. doi:10.2216/06-49.1.
  • Rosen JA, Pike CS, Golden ML. 1977. Zinc, iron, and chlorophyll metabolism in zinc-toxic corn. Plant Physiol. 59(6):1085–1087. doi:10.1104/pp.59.6.1085.
  • Rother M, Krauss GJ, Grass G, Wesenberg D. 2006. Sulphate Assimilation under Cd2+ Stress in Physcomitrella patens—Combined Transcript, Enzyme and Metabolite Profiling. Plant Cell Environ. 29(9):1801–1811. doi:10.1111/j.1365-3040.2006.01557.x.
  • Rout GR, Das P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie. 23(1):3–11. doi:10.1007/978-90-481-2666-8_53.
  • Salemaa M, Derome J, Helmisaari HS, Nieminen T, Vanha-Majamaa I. 2004. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulphur deposition in Finland. Sci Total Environ. 324(1–3):141–160. doi:10.1016/j.scitotenv.2003.10.025.
  • Samreen, Tayyeba, Shah, Hamid Ullah, Ullah, Saleem, Javid, Muhammad, Humaira,. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arab J Chem. 10: S1802–S1807. doi:10.1016/j.arabjc.2013.07.005.
  • Sánchez-Pardo B, Fernández-Pascual M, Zornoza P. 2014. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. J Plant Res. 127(1):119–129. doi:10.1007/s10265-013-0583-1.
  • Sandalio LM, Dalurzo HC, Gómez M, Romero‐Puertas MC, del Río LA. 2001. Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot. 52(364):2115–2126. doi:10.1093/jexbot/52.364.2115.
  • Sassmann S, Wernitznig S, Lichtscheidl IK, Lang I. 2010. Comparing copper resistance in two bryophytes: Mielichhoferia elongata Hornsch. versus Physcomitrella patens Hedw. Protoplasma. 246(1–4):119–123. doi:10.1007/s00709-010-0106-z.
  • Schwaegrichen F. 1816. Species Muscorum Frondosorum, Descriptae et Tabvlis Aeneis coloratis illvstratae. Opus Postumum. Supplementum Primum Scriptum. Leipzig, Germany. Suppl. 1(II):103.
  • Shakya K, Chettri MK, Sawidis T. 2008. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol. 54(3):412–421. doi:10.1007/s00244-007-9060-y.
  • Sharma B, Chettri MK. 2008. Impacts of heavy metals on accumulation of essential micronutrients and chlorophylls in some vegetables. Pollut Res. 27:355–363.
  • Sidhu M, Brown DH. 1996. A new laboratory technique for studying the effects of heavy metals on bryophyte growth. Ann Bot. 78(6):711–717. doi:10.1006/anbo.1996.0181.
  • Souri Z, Cardoso AA, da‐Silva CJ, de Oliveira LM, Dari B, Sihi D, Karimi N. 2019. Heavy Metals and Photosynthesis: recent Developments. In: Ahmad P, Ahanger MA, Alyemeni MN, Alam P, editors. Photosynthesis, productivity and environmental stress. Hoboken (NJ): Wiley Blackwell, p. 107–134. doi:10.1002/9781119501800.ch7.
  • Spagnuolo V, Zampella M, Giordano S, Adamo P. 2011. Cytological stress and element uptake in moss and lichen exposed in bags in urban area. Ecotoxicol Environ Saf. 74(5):1434–1443. doi:10.1016/j.ecoenv.2011.02.011.
  • Stobart AK, Griffiths WT, Ameen‐Bukhari I, Sherwood RP. 1985. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant. 63(3):293–298. doi:10.1111/j.1399-3054.1985.tb04268.x.
  • Sun SQ, He M, Cao T, Yusuyin Y, Han W, Li JL. 2010. Antioxidative responses related to H2O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni. Environ Monit Assess. 163(1–4):303–312. doi:10.1007/s10661-009-0835-7.
  • Supriatno S, Chairunnisa C, Rahmatan H. 2018. Effects of Heavy Metal Lead (Pb) Exposure on Chlorophyll Content and Anatomic Structure of rice (Oryza sativa L.). In: Proceedings of the First International Graduate Conference (IGC) On Innovation, Creativity, Digital, & Technopreneurship for Sustainable Development in Conjunction with The 6th Roundtable for Indonesian Entrepreneurship Educators 2018 Universitas Syiah Kuala, Banda Aceh, Indonesia, 3–5 October 2018.
  • Świsłowski P, Nowak A, Rajfur M. 2021. Is your moss alive during active biomonitoring study? Plants (Basel). 10(11):2389. doi:10.3390/plants10112389.
  • Świsłowski P, Nowak A, Wacławek S, Silvestri D, Rajfur M. 2022. Bioaccumulation of trace elements from aqueous solutions by selected terrestrial moss species. Biology (Basel). 11(12):1692. doi:10.3390/biology11121692.
  • Świsłowski P, Rajfur M, Wacławek M. 2020. Influence of heavy metal concentration on chlorophyll content in Pleurozium schreberi mosses. Ecol Chem Eng. 27(4):591–601. doi:10.2478/eces-2020-0037.
  • Taeprayoon P, Printarakul N, Somtrakoon K, Chunwichit S, Yooma K, Wiangdao S, Avakul P, Meeinkuirt W. 2023. Potentially toxic element accumulation of bryophyte taxa in contaminated soils at Tak Province, Thailand. Ecol Indic. 147:109971. doi:10.1016/j.ecolind.2023.109971.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metal toxicity and the environment. Mol Clin Environ Exp Suppl. 101:133–164. doi:10.1007/978-3-7643-8340-4_6.
  • Tesser TT, Bordin J, Da Rocha CM, Da Silva A. 2021. Application of the dry and wet biomass of bryophytes for phytoremediation of metals: batch experiments. Environ Chall. 5:100382. doi:10.1016/j.envc.2021.100382.
  • Tremper AH, Agneta M, Burton S, Higgs DE. 2004. Field and laboratory exposures of two moss species to low level metal pollution. J Atmos Chem. 49(1-3):111–120. doi:10.1007/s10874-004-1218-7.
  • Tretiach M, Adamo P, Bargagli R, Baruffo L, Carletti L, Crisafulli P, Giordano S, Modenesi P, Orlando S, Pittao E. 2007. Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on sample vitality. Environ Pollut. 146(2):380–391. doi:10.1016/j.envpol.2006.03.046.
  • Tripathy BC, Oelmüller R. 2012. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 7(12):1621–1633. doi:10.4161/psb.22455.
  • Tuba Z, Saxena DK, Srivastava K, Singh S, Czobel S, Kalaji HM. 2010. Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. Curr Sci. 98:1505–1508.
  • Tyler G. 1990. Bryophytes and heavy metals: a literature review. Bot J Linn Soc. 104(1–3):231–253. doi:10.1111/j.1095-8339.1990.tb02220.x.
  • Vanderpoorten A, Papp B, Gradstein R. 2010. Chapter 13 sampling of bryophytes. In: Jutta J, Degreef J, Hauser C, Monje JC, Samyn Y, Vandenspiegel D, editors. Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring. Vol. 8. Brussels (Belgium): ABC Taxa. p. 331–345.
  • Vázquez MD, López J, Carballeira A. 1999. Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Saf. 44(1):12–24. doi:10.1006/eesa.1999.1798.
  • Volland S, Andosch A, Milla M, Stöger B, Lütz C, Lütz-Meindl U. 2011. Intracellular metal compartmentalization in the green algal model system Micrasterias denticulata (Streptophyta) measured by transmission electron microscopy-coupled electron energy loss spectroscopy. J Phycol. 47(3):565–579. doi:10.1111/j.1529-8817.2011.00988.x.
  • Volland S, Lütz C, Michalke B, Lütz-Meindl U. 2012. Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol. 109:59–69. doi:10.1016/j.aquatox.2011.11.013.
  • Wada O. 2004. What are trace elements? - their deficiency and excess states. Japan Med Assoc J. 47(8):351–358.
  • Wang F, Chen F, Cai Y, Zhang G, Wu F. 2011. Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res. 144(1–3):1275–1288. doi:10.1007/s12011-011-9121-y.
  • Zhang H, Xu Z, Guo K, Huo Y, He G, Sun H, Guan Y, Xu N, Yang W, Sun G. 2020. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol Environ Saf. 202:110856. 110856. doi:10.1016/j.ecoenv.2020.110856.
  • Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. 2019. The essential metals for humans: a brief overview. J Inorg Biochem. 195:120–129. doi:10.1016/j.jinorgbio.2019.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.