91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of electrode separators and the external resistance in electrochemically assisted constructed wetlands

, , , &

References

  • APHA-AWWA-WPCF. 2002. Métodos normalizados para el análisis de aguas potables y residuales. Madrid: Díaz de Santos.
  • Behera M, Jana PS, More TT, Ghangrekar MM. 2010. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry. 79(2):228–233. doi:10.1016/j.bioelechem.2010.06.002.
  • Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 69(3):1548–1555. doi:10.1128/AEM.69.3.1548-1555.2003.
  • Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Koroglu EO, Cetinkaya AY, Singh S, Arya D, Modestra JA, Krishna KV, et al. 2016. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renewable Sustainable Energy Rev. 53:462–476. doi:10.1016/j.rser.2015.08.058.
  • Castellanos JZ, Vargas-Tapia P. 2009. Los sustratos en la horticultura protegida. In Manual de producción de tomate en invernadero. Intagri, S.C. Chapter 5. Celaya, Guanajuato, Mexico; p. 105–129. https://www.intagri.com/public_files/Manual-de-produccion-de-tomate-bajo-invernadero.pdf.
  • Choi S, Kim JR, Cha J, Kim Y, Premier GC, Kim C. 2013. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter. Bioresour Technol. 128:14–21. doi:10.1016/j.biortech.2012.10.013.
  • Daud SM, Kim BH, Ghasemi M, Daud WRW. 2015. Separators used in microbial electrochemical technologies: current status and future prospects. Bioresour Technol. 195:170–179. doi:10.1016/j.biortech.2015.06.105.
  • Deng H, Chen Z, Zhao F. 2011. Energy from plants and microorganisms: progress in plant-microbial fuel cells. Chem Sus Chem. 5(6):1006–1011. doi:10.1002/cssc.201100257.
  • DOF. 1981. Declaratoria de vigencia NMX-AA-074-1981. Análisis de agua-Medición del ion sulfato, en aguas naturales, potables y residuales, método de prueba. Mexico City, Mexico: Secretaría de Economía.
  • DOF. 1986. Declaratoria de vigencia NMX-AA-082-1986. Contaminación del agua-determinación de nitrógeno de nitrato-Método espectrofotométrico ultravioleta. Mexico City, Mexico: Secretaría de Economía.
  • DOF. 1987. Declaratoria de vigencia NMX-AA-099-1987. Método para la determinación de nitrógeno de nitratos en agua mediante espectrofotometría. Mexico City, Mexico: Secretaría de Economía.
  • DOF. 2010. Declaratoria de vigencia NMX-AA-026-SCFI-2010. Análisis de agua - Medición de nitrógeno total Kjeldahl en aguas naturales, residuales y residuales tratadas - Método de prueba. Secretaría de Economía, Mexico City, Mexico.
  • Doherty L, Zhao Y, Zhao X, Hu Y, Hao X, Xu L, Liu R. 2015. A review of a recently emerged technology: constructed wetland and microbial fuel cells. Water Res. 85:38–45. doi:10.1016/j.watres.2015.08.016.
  • Durán-de-Bazúa C, Guido-Zárate A, Huanosta T, Padrón-López RM, Rodríguez-Monroy J. 2008. Artificial wetlands performance: nitrogen removal. Water Sci Technol. 58(7):1357–1360. doi:10.2166/wst.2008.350.
  • Dušek J, Picek T, Čížková H. 2008. Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: diel, seasonal and spatial fluctuations. Ecol. Eng. 34(3):223–232. doi:10.1016/j.ecoleng.2008.08.008.
  • Gouda MH, Elnouby M, Aziz AN, Youssef ME, Santos DMF, Elessawy NA. 2020. Green and low-cost membrane electrode assembly for proton exchange membrane fuel cells: effect of double-layer electrodes and gas diffusion layer. Front Mater. 6. doi:10.3389/fmats.2019.00337.
  • Klotz MG, Stein LY. 2008. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett. 278(2):146–156. doi:10.1111/j.1574-6968.2007.00970.x.
  • Liu S, Song H, Wei S, Yang F, Li X. 2014. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland microbial fuel cell systems. Bioresour Technol. 166:575–583. doi:10.1016/j.biortech.2014.05.104.
  • Logan BE, Regan JM. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14(12):512–518. doi:10.1016/j.tim.2006.10.003.
  • Miranda-Méndez OH. 2017. Producción de electricidad en sistemas de humedales artificiales asistidos electroquímicamente: flujo continuo versus flujo intermitente. Tesis de Maestría en Ingeniería Ambiental. Programa de Maestría y Doctorado en Ingeniería. UNAM. Ciudad de México. México. http://132.248.9.195/ptd2017/junio/0761042/Index.html.
  • Oaxaca-Grande AM. 1997. Estudio comparativo para la determinación de la demanda bioquímica de oxígeno entre el método estándar de reflujo abierto y el método colorimétrico (rápido) de reflujo cerrado. Vol. 1. SERIE: QUÍMICA AMBIENTAL DE LAS SUBSTANCIAS Y RESIDUOS PELIGROSOS. Mexico City, Mexico: PIQAyQA-FQ-UNAM. 103 p.
  • Oh S, Min B, Logan BE. 2004. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol. 38(18):4900–4904. doi:10.1021/es049422p.
  • Oon Y-L, Ong S-A, Ho L-N, Wong Y-S, Oon Y-S, Lehl HK, Thung W-E. 2015. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation. Bioresour Technol. 186:270–275. doi:10.1016/j.biortech.2015.03.014.
  • Ortiz-Zamora SI. 2018. Estudio de separadores de semi-reacciones en humedales artificiales asistidos electroquímicamente. Master’s Thesis in Engineering (Environmental Engineering - Water). Program of Master and Doctorate in Engineering. UNAM. Oral examination: December 05, 2018. http://132.248.9.195/ptd2018/noviembre/0782557/Index.html.
  • Perry L. 2003. pH for the Garden. University of Vermont Extension. Department of Plant and Soil Science. http://pss.uvm.edu/ppp/pubs/oh34.htm. 23/11/2017
  • Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1(1):9–18. doi:10.1038/ismej.2007.4.
  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. 2008. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26(8):450–459. doi:10.1016/j.tibtech.2008.04.008.
  • Sacco NJ, Figuerola ELM, Pataccini G, Bonetto MC, Erijman L, Cortón E. 2012. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresour Technol. 126:328–335. doi:10.1016/j.biortech.2012.09.060.
  • Salinas-Juárez MG, Roquero P, Durán-Domínguez-de-Bazúa MdC. 2016. Plant and microorganisms support media for electricity generation in biological fuel cells with living hydrophytes. Bioelectrochemistry. 112:145–152. http://www.sciencedirect.com/science/article/pii/S1567539416300172. doi:10.1016/j.bioelechem.2016.02.007.
  • Salinas-Juárez MG, Roquero-Tejeda P, Durán-Domínguez-de-Bazúa MdC. 2017. Patent number 395859. Granted: September 12, 2022. Artificial wetland for electricity generation (Humedal artificial para la generación de electricidad). Registration request: november 29, 2017. IMPI Mexico (Mexican Institute for Industrial Property). Mexico City, Mexico.
  • Sarma PJ, Mohanty K. 2023. Development and comprehensive characterization of low-cost hybrid clay based ceramic membrane for power enhancement in plant based microbial fuel cells (PMFCs). Mater Chem Phys. 296:127337. doi:10.1016/j.matchemphys.2023.127337.
  • Sophia AC, Sreeja S. 2017. Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator. Sustainable Energy Technol Assess. 21:59–66. doi:10.1016/j.seta.2017.05.001.
  • Villaseñor J, Capilla P, Rodrigo MA, Cañizares P, Fernández FJ. 2013. Operation of a horizontal subsurface flow constructed wetland - microbial fuel cell treating wastewater under different organic loading rates. Water Res. 47(17):6731–6738. doi:10.1016/j.watres.2013.09.005.
  • Xu L, Zhao Y, Tang C, Doherty L. 2017. Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell. J Environ Manage. 207:116–123. doi:10.1016/j.jenvman.2017.11.035.
  • Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK. 2012. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol. Eng. 47:126–131. doi:10.1016/j.ecoleng.2012.06.029.
  • Yakar A, Türe C, Türker OC, Vymazal J, Saz Ç. 2018. Impacts of various filtration media on wastewater treatment and bioelectric production in up-flow constructed wetland combined with microbial fuel cell (UCW-MFC). Ecol Eng. 117:120–132. doi:10.1016/j.ecoleng.2018.03.016.
  • Zhao Y, Collum S, Phelan M, Goodbody T, Doherty L, Hu Y. 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials. Chemical Engineering Journal. 229:364–370. doi:10.1016/j.cej.2013.06.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.