107
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Uptake of perfluoroalkyl substances PFOS and PFOA by free-floating hydrophytes Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms

, , , &

References

  • Abbas Z, Arooj F, Ali S, Zaheer IE, Rizwan M, Riaz MA. 2019. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Int J Phytoremediation. 21(13):1356–1367. doi: 10.1080/15226514.2019.1633259.
  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR. 2005. Phytoremediation—an overview. CRC Crit Rev Plant Sci. 24(2):109–122. doi: 10.1080/07352680590952496.
  • Bizkarguenaga E, Zabaleta I, Mijangos L, Iparraguirre A, Fernández L, Prieto A, Zuloaga O. 2016. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil. Sci Total Environ. 571:444–451. doi: 10.1016/j.scitotenv.2016.07.010.
  • Centers for Disease Control and Prevention. 2018. Agency for Toxic Substances and Disease Registry. [accessed 2023 May 05]. https://www.atsdr.cdc.gov/.
  • ChemEurope. 2023. Lumitos. Sulfonic Acids. Berlin(Germany): Lumitos. [accessed 2023 Jun 28]. https://www.chemeurope.com/en/encyclopedia/Sulfonic_acid.html.
  • Das S, Goswami S, Talukdar AD. 2014. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxicol. 92(2):169–174. doi: 10.1007/s00128-013-1152-y.
  • Rodrigues ACD, Rocha MVdC, Lima ESA, Pinho CFd, Santos AMD, Santos FSD, Amaral Sobrinho NMBd 2020. Potential of water lettuce (Pistia stratiotes L.) for phytoremediation: physiological responses and kinetics of zinc uptake. Int J Phytoremediation. 22(10):1019–1027. doi: 10.1080/15226514.2020.1725868.
  • Environmental Protection Agency. 2019. Test methods for evaluating solid waste, physical/chemical methods, EPA publication SW-846 Test Method 8327: per-and polyfluoroalkyl substances (PFAS) by liquid chromatography/tandem mass spectrometry (LC/MS/MS). [accessed 2023 June]. https://www.epa.gov/hw-sw846/sw-846-test-method-8327-and-polyfluoroalkyl-substances-pfas-liquid-chromatographytandem.
  • Escoto DF, Gayer MC, Bianchini MC, da Cruz Pereira G, Roehrs R, Denardin ELG. 2019. Use of Pistia stratiotes for phytoremediation of water resources contaminated by clomazone. Chemosphere. 227:299–304. doi: 10.1016/j.chemosphere.2019.04.013.
  • Felizeter S, Jürling H, Kotthoff M, Voogt PD, McLachlan M. 2021. Uptake of perfluorinated alkyl acids by crops: results from a field study. Environ Sci Process Impacts. 23(8):1158–1170. doi: 10.1039/D1EM00166C.
  • Felizeter S, McLachlan MS, de Voogt PD. 2012. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lacuca sativa). Environ Sci Technol. 46(21):11735–11743. doi: 10.1021/es302398u.
  • Felizeter S, Mclachlan MS, Voogt PD. 2014. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. J Agric Food Chem. 62(15):3334–3342. doi: 10.1021/jf500674j.
  • Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. 2021. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 40(3):606–630. doi: 10.1002/etc.4890.
  • Gobelius L, Lewis J, Ahrens L. 2017. Plant uptake of per- and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ Sci Technol. 51(21):12602–12610. doi: 10.1021/acs.est.7b02926.
  • Grandjean P, Clapp R. 2015. Perfluorinated alkyl substances: emerging insights into health risks. New Solut. 25(2):147–163. doi: 10.1177/1048291115590506.
  • Hua J, Zhang C, Yin Y, Chen R, Wang X. 2011. Phytoremediation potential of three aquatic macrophytes in manganese-contaminated water. Water Environ J. 26(3):335–342. doi: 10.1111/j.1747-6593.2011.00293.x.
  • Huang D, Xiao R, Du L, Zhang G, Yin L, Deng R, Wang G. 2021. Phytoremediation of poly- and perfluoroalkyl substances: a review on aquatic plants, influencing factors, and phytotoxicity. J Hazard Mater. 418:126314. doi: 10.1016/j.jhazmat.2021.126314.
  • International Plant Names Index (IPNI). 2023. The Royal Botanic Gardens, Kew. Harvard University Herbaria & Libraries and Australian National Herbarium. [accessed 8 Feb 2024]. http://www.ipni.org.
  • Jones JL, Jenkins RO, Haris PI. 2018. Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river. Sci Rep. 8(1):11071. doi: 10.1038/s41598-018-29387-6.
  • Kucharzyk KH, Darlington R, Benotti M, Deeb R, Hawley E. 2017. Novel treatment technologies for PFAS compounds: a critical review. J Environ Manage. 204(Pt 2):757–764. doi: 10.1016/j.jenvman.2017.08.016.
  • Kumar V, Singh J, Pathak VV, Ahmad S, Kothari R. 2017. Experimental and kinetics study for phytoremediation of sugar mill effluent using water lettuce (Pistia stratiotes L.) and its end use for biogas production. Biotech. 7(5):330. doi: 10.1007/s13205-017-0963-7.
  • Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ. 2006. Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci. 90(2):510–518. doi: 10.1093/toxsci/kfj105.
  • Liu J, Avendaño SM. 2013. Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int. 61:98–114. doi: 10.1016/j.envint.2013.08.022.
  • Marschner H. 2008. Mineral nutrition of higher plants. Amsterdam: Acad. Press.
  • Masiyambiri V, Yaou Balarabe B, Adjama I, Moussa H, Illiassou Oumarou MN, Iro Sodo AM. 2023. A study of the phytoremediation process using water lettuce (Pistia stratiotes) in the removal of ciprofloxacin. Am J Life Sci Innov. 2(1):1–8. doi: 10.54536/ajlsi.v2i1.1092.
  • Mei W, Sun H, Song M, Jiang L, Li Y, Lu W, Ying GG, Luo C, Zhang G. 2021. Per- and polyfluoroalkyl substances (PFASs) in the soil–plant system: sorption, root uptake, and translocation. Environ Int. 156:106642. doi: 10.1016/j.envint.2021.106642.
  • Merino N, Qu Y, Deeb RA, Hawley EL, Hoffmann MR, Mahendra S. 2016. Degradation and removal methods for perfluoroalkyl and polyfluoroalkyl substances in water. Environ Eng Sci. 33(9):615–649. doi:10.1089/ees.2016.0233.
  • Mishra J, Singh R, Arora NK. 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol. 8:1706. doi: 10.3389/fmicb.2017.01706.
  • Pi N, Ng JZ, Kelly BC. 2017. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes. Water Res. 117:167–174. doi: 10.1016/j.watres.2017.04.003.
  • Piyush G, Roy S, Mahindrakar AB. 2012. Treatment of water using water hyacinth, water lettuce and vetiver grass - a review. RE. 2(5):202–215. doi: 10.5923/j.re.20120205.04.
  • Posit Team. 2022. RStudio: integrated development environment for R. Boston (MA): Posit Software, PBC. http://www.posit.co/.
  • Putra RS, Cahyana F, Novarita D. 2015. Removal of lead and copper from contaminated water using EAPR system and uptake by water lettuce (Pistia stratiotes L.). Procedia Chem. 14:381–386. doi: 10.1016/j.proche.2015.03.052.
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Reddy KR. 1983. Water hyacinth (Eichhornia crassipes) biomass production in Florida. Biomass. 6(1–2):167–181. doi: 10.1016/0144-4565(84)90019-2.
  • Reddy KR, DeBusk WF. 1984. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. Water hyacinth, water lettuce, and pennywort. Econ Bot. 38(2):229–239. http://www.jstor.org/stable/4254615. doi: 10.1007/BF02858838.
  • Saleh NB, Khalid A, Tian Y, Ayres C, Sabaraya IV, Pietari J, Hanigan D, Chowdhury I, Apul OG. 2019. Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies. Environ Sci: water Res Technol. 5(2):198–208. doi: 10.1039/C8EW00621K.
  • Şentürk I, Eyceyurt Divarcı NS, Öztürk M. 2023. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes). Int J Phytoremediation. 25(5):550–561. doi: 10.1080/15226514.2022.2092063.
  • Singh J, Kumar V, Kumar P, Kumar P, Yadav KK, Cabral-Pinto MMS, Kamyab H, Chelliapan S. 2021. An experimental investigation on phytoremediation performance of water lettuce (Pistia stratiotes L.) for pollutants removal from paper mill effluent. Water Environ Res. 93(9):1543–1553. doi: 10.1002/wer.1536.
  • Stahl T, Heyn J, Thiele H, Hüther J, Failing K, Georgii S, Brunn H. 2009. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol. 57(2):289–298. doi: 10.1007/s00244-008-9272-9.
  • Swain G, Adhikari S, Mohanty P. 2014. Phytoremediation of copper and cadmium from water using water hyacinth “Eichhornia crassipes". J Agric Sci Technol. 2(1):1–7. doi: 10.14355/ijast.2014.0301.01.
  • United States Environmental Protection Agency. 2019. Per- and polyfluoroalkyl substances (PFAS). [Accessed 2019, April 25]. https://www.epa.gov/pfas.
  • Voogt PD, Saez M. 2006. Analytical chemistry of perfluoroalkylated substances. Trends Anal Chem. 25(4):326–342. doi: 10.1016/j.trac.2005.10.008.
  • Wang J, Fu G, Li W, Shi Y, Pang J, Wang Q, Lü W, Liu C, Liu J. 2018. The effects of two free-floating plants (Eichhornia crassipes and Pistia stratiotes) on the burrow morphology and water quality characteristics of pond loach (Misgurnus anguillicaudatus) habitat. Aquaculture and Fisheries. 3(1):22–29. doi: 10.1016/j.aaf.2017.12.001.
  • Wang W, Rhodes G, Ge J, Yu X, Li H. 2020. Uptake and accumulation of per- and polyfluoroalkyl substances in plants. Chemosphere. 261:127584. doi: 10.1016/j.chemosphere.2020.127584.
  • Wen B, Li L, Liu Y, Zhang H, Hu X, Shan X, Zhang S. 2013. Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. Cv. TY2). Plant Soil. 370(1-2):345–354. doi: 10.1007/s11104-013-1637-9.
  • Wen B, Wu Y, Zhang H, Liu Y, Hu X, Huang H, Zhang S. 2016. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ Pollut. 216:682–688. doi: 10.1016/j.envpol.2016.06.032.
  • Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.
  • Xiang L, Chen XT, Yu PF, Li XH, Zhao HM, Feng NX, Li YW, Li H, Cai QY, Mo CH, et al. 2020. Oxalic acid in root exudates enhances accumulation of perfluorooctanoic acid in lettuce. Environ Sci Technol. 54(20):13046–13055. doi: 10.1021/acs.est.0c04124.
  • Xie Y, Allaire JJ, Grolemund G. 2019. R Markdown the definitive guide. Boca Raton: CRC Press.
  • Xu B, Qiu W, Du J, Wan Z, Zhou JL, Chen H, Liu R, Magnuson JT, Zheng C. 2022. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants. iScience. 25(4):104061. doi: 10.1016/j.isci.2022.104061.
  • Zhang W, Zhang D, Zagorevski DV, Liang Y. 2019. Exposure of Juncus effusus to seven perfluoroalkyl acids: uptake, accumulation and phytotoxicity. Chemosphere. 233:300–308. doi: 10.1016/j.chemosphere.2019.05.258.
  • Zhao H, Guan Y, Zhang G, Zhang Z, Tan F, Quan X, Chen J. 2013. Uptake of perfluorooctane sulfonate (PFOS) by wheat (Triticum aestivum L.) plant. Chemosphere. 91(2):139–144. doi: 10.1016/j.chemosphere.2012.11.03.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.