97
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Mitigation strategies for heavy metal toxicity and its negative effects on soil and plants

&

References

  • Alboghobeish H, Tahmourespour A, Doudi M. 2014. The study of nickel resistant bacteria (NiRB) isolated from waste waters polluted with different industrial sources. J Environ Sci Eng. 12:44.
  • Ayangbenro AS, Babalola OO. 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health. 14(1):94. doi: 10.3390/ijerph14010094.
  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT. 2015. Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manage. 151:160–166. doi: 10.1016/j.jenvman.2014.12.045.
  • Bai B, Chen J, Bai F, Nie Q, Jia X. 2024. Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environ Technol Innov. 33:103485. doi: 10.1016/j.eti.2023.103485.
  • Bai B, Xu T, Nie Q, Li P. 2020. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int J Heat Mass Transf. 153:119573. doi: 10.1016/j.ijheatmasstransfer.2020.119573.
  • Bai LY, Zeng XB, Su SM, Duan R, Wang YN, Gao X. 2015. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China. Environ Sci Pollut Res Int. 22(7):5359–5369. doi: 10.1007/s11356-014-3763-1.
  • Budryn G, Gałązka-Czarnecka I, Brzozowska E, Grzelczyk J, Mostowski R, Żyżelewicz D, Cerón-Carrasco JP, Pérez-Sánchez H. 2018. Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular modeling. Food Chem. 253:323–336. doi: 10.1016/j.foodchem.2018.02.042.
  • Debonne N, Vliet J, Metternicht G, Verburg P. 2021. Agency shifts in agricultural land governance and their implications for land degradation neutrality. Glob Environ Change. 66:102221. doi: 10.1016/j.gloenvcha.2020.102221.
  • Defarge N, Spiroux de Vendômois J, Séralini GE. 2018. Toxicity of formulated and heavy metal singly glyphosate-based herbicides and other pesticides. Toxicol Rep. 5:156–163. doi: 10.1016/j.toxrep.2017.12.025.
  • Drozdova MY, Pozdnyakova AV, Osintseva MA, Burova NV, Minina VI. 2021. The microorganism-plant system for the remediation of soil exposed to coal mining. Foods Raw Mater. 9(2):406–418. doi: 10.21603/2308-4057-2021-2-406-418.
  • Du K, Huang J, Wang W, Zeng Y, Li X, Zhao F. 2024. Monitoring low-temperature stress in winter wheat using TROPOMI solar-induced chlorophyll fluorescence. IEEE Trans Geosci Remote Sens. 62:1–11. doi: 10.1109/TGRS.2024.3351141.
  • Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E. 2016. Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth-promoting rhizobacteria. Plant Soil. 399(1–2):179–192. doi: 10.1007/s11104-015-2691-2.
  • Fajardo C, Costa G, Nande M, Botías P, García-Cantalejo J, Martín M. 2019. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Appl Soil Ecol. 135:56–64. doi: 10.1016/j.apsoil.2018.10.022.
  • Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu YG, Chu H. 2020. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biol Biochem. 141:107679. doi: 10.1016/j.soilbio.2019.107679.
  • Faskhutdinova E, Osintseva M, Neverova O. 2021. Prospects of using soil microbiome of mine tips for the remediation of anthropogenically disturbed ecosystems. Food Process Tech Technol. 51(4):883–904. doi: 10.21603/2074-9414-2021-4-883-904.
  • Gong Y, Zhao D, Wang Q. 2018. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res. 147:440–460. doi: 10.1016/j.watres.2018.10.024.
  • Guan D-X, Sun F-S, Yu G-H, Polizzotto ML, Liu Y-G. 2018. Total and available metal concentrations in soils from six long-term fertilization sites across China. Environ Sci Pollut Res Int. 25(31):31666–31678. doi: 10.1007/s11356-018-3143-3.
  • Guan Q, Liu Z, Shao W, Tian J, Luo H, Ni F, Shan Y. 2022. Probabilistic risk assessment of heavy metals in urban farmland soils of a typical Oasis city in northwest China. Sci Total Environ. 833:155096. doi: 10.1016/j.scitotenv.2022.155096.
  • Haque S, Srivastava N, Pal DB, Alkhanani MF, Almalki AH, Areeshi MY, Naidu R, Gupta VK. 2022. Functional microbiome strategies for the bioremediation of petroleum-hydrocarbon and heavy metal contaminated soils: a review. Sci Total Environ. 833:155222. doi: 10.1016/j.scitotenv.2022.155222.
  • Harris A, Xanthos SJ, Galiotos JK, Douvris C. 2018. Investigation of the metal content of sediments around the historically polluted Potomac River basin in Washington D.C., United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem J. 142:140–143. doi: 10.1016/j.microc.2018.06.033.
  • He M-Y, Dong J-B, Jin Z, Liu C-Y, Xiao J, Zhang F, Sun H, Zhao Z-Q, Gou L-F, Liu W-G. 2021. Pedogenic processes in loess-paleosol sediments: clues from Li isotopes of leachate in Luochuan loess. Geochim Cosmochim Acta. 299:151–162. doi: 10.1016/j.gca.2021.02.021.
  • He M-Y, Ren TX, Jin ZD, Deng L, Liu HJ, Cheng YY, Li ZY, Liu XX, Yang Y, Chang H. 2023. Precise analysis of potassium isotopic composition in plant materials by multi-collector inductively coupled plasma mass spectrometry. Spectrochim Acta B. 209:106781. doi: 10.1016/j.sab.2023.106781.
  • Hu Q, Zhao Y, Hu X, Qi J, Suo L, Pan Y, Song B, Chen X. 2022. Effect of saline land reclamation by constructing the “raised field – shallow trench” pattern on agroecosystems in Yellow River Delta. Agric Water Manage. 261:107345. doi: 10.1016/j.agwat.2021.107345.
  • Irkitova AN, Kagan JR, Sokolova GG. 2012. Comparative analysis of the methods to define antagonistic activity of lactic bacteria. News Altai State University. p. 41–44.
  • Jiang C, Wang Y, Yang Z, Zhao Y. 2023. Do adaptive policy adjustments deliver ecosystem–agriculture–economy co-benefits in land degradation neutrality efforts? Evidence from southeast coast of China. Environ Monit Assess. 195(10):1215. doi: 10.1007/s10661-023-11821-6.
  • Jiang H-H, Cai L-M, Wen H-H, Hu G-C, Chen L-G, Luo J. 2020. An integrated approach to quantify geological and human health risks from different sources of soil heavy metals. Sci Total Environ. 701:134466. doi: 10.1016/j.scitotenv.2019.134466.
  • Julia WT, Gunther A. 1947. A streak plate method for determining growth curves. J Lab Clin Med. 32:11–39.
  • Kapusta-Duch J, Leszczyńska T, Florkiewicz A, Filipiak-Florkiewicz A. 2011. Comparison of lead and cadmium contents in cruciferous vegetables grown under diversified ecological conditions: Cracow region of Poland. Ecol Food Nutr. 50(2):137–154. doi: 10.1080/03670244.2011.552372.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 182:247–268. doi: 10.1016/j.gexplo.2016.11.021.
  • Khan I, Aftab M, Shakir S, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I. 2019. Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metal-tolerant antifungal isolates. Environ Monit Assess. 191(9):585. doi: 10.1007/s10661-019-7769-5.
  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W. 2019. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam. 28(4):380–394. doi: 10.1080/15320383.2019.1592108.
  • Liang DH, Hu Y. 2021. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater. J Hazard Mater. 402:124032. doi: 10.1016/j.jhazmat.2020.124032.
  • Liu A, Wang W, Chen X, Zheng X, Fu W, Wang G, Ji J, Guan C. 2022. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Environ Pollut. 314:120303. doi: 10.1016/j.envpol.2022.120303.
  • Liu H, Cui Y, Zhou J, Penttinen P, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, et al. 2022. Nickel mine soil is a potential source for soybean plant growth promoting and heavy metal-tolerant rhizobia. PeerJ. 10:e13215. doi: 10.7717/peerj.13215.
  • Liu J, Wang Y, Li Y, Peñuelas J, Zhao Y, Sardans J, Tetzlaff D, Liu J, Liu X, Yuan H, et al. 2023. Soil ecological stoichiometry synchronously regulates stream nitrogen and phosphorus concentrations and ratios. Catena. 231:107357. doi: 10.1016/j.catena.2023.107357.
  • Liu M, Wang S, Yang M, Ning X, Nan Z. 2022. Experimental study on treatment of heavy metal-contaminated soil by manganese-oxidizing bacteria. Environ Sci Pollut Res Int. 29(4):5526–5540. doi: 10.1007/s11356-021-15475-0.
  • Martis BS, Mohan AK, Chiplunkar S, Kamath S, Goveas LC, Rao CV. 2021. Bacterium isolated from coffee waste pulp biosorbs lead: investigation of EPS-mediated mechanism. Curr Res Microb Sci. 2:100029. doi: 10.1016/j.crmicr.2021.100029.
  • Mitra S, Pramanik K, Ghosh PK, Soren T, Sarkar A, Dey RS, Pandey S, Maiti TK. 2018. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol Res. 210:12–25. doi: 10.1016/j.micres.2018.03.003.
  • Mogal CS, Solanki VH, Kansara RW, Jha S, Singh S, Parekh VB, Rajkumar BK. 2022. UHPLC–MS/MS and QRT-PCR profiling of PGP agents and Rhizobium spp. of induced phytohormones for growth promotion in mung bean (var. Co4). Heliyon. 8(5):e09532. doi: 10.1016/j.heliyon.2022.e09532.
  • Naaz F, Bhattacharya A, Mathur M, Bano F, Pant KK, Malik A. 2021. Exploration of heavy metal uptake potential of three algal strains/consortia in suspended and attached growth systems. J Water Process Eng. 43:102315. doi: 10.1016/j.jwpe.2021.102315.
  • Ni L, Xu Y, Chen L. 2021. First experimental evidence for the presence of potentially virulent Klebsiella oxytoca in 14 species of commonly consumed aquatic animals, and phenotyping and genotyping of K. oxytoca isolates. Antibiotics. 10(10):1235. doi: 10.3390/antibiotics10101235.
  • Nizamutdinov TI, Suleymanov AR, Morgun EN, Dinkelaker NV, Abakumov EV. 2022. Ecotoxicological analysis of fallow soil at the Yamal Experimental Agricultural Station. Food Process Tech Technol. 52(2):350–360. doi: 10.21603/2074-9414-2022-2-2369.
  • Oliveira VH, Ullah I, Dunwell JM, Tibbett M. 2020. Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicol Environ Saf. 202:110917. doi: 10.1016/j.ecoenv.2020.110917.
  • Paredes-Páliz KI, Pajuelo E, Doukkali B, Caviedes MÁ, Rodríguez-Llorente ID, Mateos-Naranjo E. 2016. Bacterial inoculants for enhanced seed germination of Spartina densiflora: implications for restoration of metal-polluted areas. Mar Pollut Bull. 110(1):396–400. doi: 10.1016/j.marpolbul.2016.06.036.
  • Pressler Y, Zhou J, He Z, van Nostrand JD, Smith AP. 2020. Post-agricultural tropical forest regeneration shifts soil microbial functional potential for carbon and nutrient cycling. Soil Biol Biochem. 145:107784. doi: 10.1016/j.soilbio.2020.107784.
  • Rahman Z, Singh VP. 2020. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications, and challenges. Environ Sci Pollut Res Int. 27(22):27563–27581. doi: 10.1007/s11356-020-08903-0.
  • Rillig MC, Ryo M, Lehmann A, Aguilar-Trigueros CA, Buchert S, Wulf A, Iwasaki A, Roy J, Yang G. 2019. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science. 366(6467):886–890. doi: 10.1126/science.aay2832.
  • Sarmiento-López LG, López-Meyer M, Maldonado-Mendoza IE, Quiroz-Figueroa FR, Sepúlveda-Jiménez G, Rodríguez-Monroy M. 2022. Production of indole-3-acetic acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J Biosci Bioeng. 134(1):21–28. doi: 10.1016/j.jbiosc.2022.03.007.
  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut. 156(3):1164–1170. doi: 10.1016/j.envpol.2008.04.007.
  • Singh K, Tripathi S, Chandra R. 2023. Bacterial assisted phytoremediation of heavy metals and organic pollutants by Cannabis sativa as accumulator plants growing on distillery sludge for ecorestoration of polluted site. J Environ Manage. 332:117294. doi: 10.1016/j.jenvman.2023.117294.
  • Suliasih WS. 2018. The application of Klebsiella sp. and Agrobacterium tumefaciens as biofertilizer and palm oil mills effluent (POME) as organic fertilizer on growth of Paraserianthes falcataria. IOP Conf Ser Earth Environ Sci. 308:152075.
  • Sun R, Yang J, Xia P, Wu S, Lin T, Yi Y. 2020. Contamination features and ecological risks of heavy metals in the farmland along the shoreline of Caohai plateau wetland, China. Chemosphere. 254:126828. doi: 10.1016/j.chemosphere.2020.126828.
  • Sun SC, Chen JX, Wang YG, Leng FF, Zhao J, Chen K, Zhang QC. 2021. Molecular mechanisms of heavy metals resistance of Stenotrophomonas rhizophila JC1 by whole genome sequencing. Arch Microbiol. 203(5):2699–2709. doi: 10.1007/s00203-021-02271-0.
  • Twaróg A, Mamak M, Sechman H, Rusiniak P, Kasprzak E, Stanek K. 2020. Impact of the landfill of ashes from the smelter on the soil environment: case study from South Poland, Europe. Environ Geochem Health. 42(5):1453–1467. doi: 10.1007/s10653-019-00435-y.
  • Uchimiya M, Bannon D, Nakanishi H, McBride MB, Williams MA, Yoshihara T. 2020. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J Agric Food Chem. 68(46):12856–12869. doi: 10.1021/acs.jafc.0c00183.
  • United Nations Sustainable Development Goals. 2023. [accessed 2023 Feb 2]. https://sdgs.un.org/ru/goals.
  • Voitenkova EV, Matveeva ZN, Makarova MA, Egorova SA, Zabrovskaia AV, Suzhaeva LV, Zueva EV, Kaftyreva LA. 2018. Difficulties in identification of Comamonas kerstersii strains isolated from intestinal microbiota of residents of the Republic of Guinea and Russian Federation. Infektsiia Immun. 8:163–168.
  • Wang G, Yang Y, Kong Y, Ma R, Yuan J, Li G, Rodríguez-Llorente ID, Mateos-Naranjo E. 2022. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives. J Hazard Mater. 421:126809. doi: 10.1016/j.jhazmat.2021.126809.
  • Wang X, Wang T, Xu J, Shen Z, Yang Y, Chen A, Wang S, Liang E, Piao S. 2022. Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat Ecol Evol. 6(7):890–899. doi: 10.1038/s41559-022-01774-3.
  • Wang Y-N, Wang Q, Li Y, Wang H, Gao Y, Sun Y, Wang B, Bian R, Li W, Zhan M. 2023. Impact of incineration slag co-disposed with ­municipal solid waste on methane production and methanogens ecology in landfills. Bioresour Technol. 377:128978. doi: 10.1016/j.biortech.2023.128978.
  • Wu B, Luo S, Luo H, Huang H, Xu F, Feng S, Xu H. 2022. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. Sci Total Environ. 808:151995. doi: 10.1016/j.scitotenv.2021.151995.
  • Wu M-H, Chen S-Y, Chen J-W, Xue K, Chen S-L, Wang X-M, Chen T, Kang S-C, Rui J-P, Thies JE, et al. 2020. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci U S A. 118(25):e2025321118. doi: 10.1073/pnas.2025321118.
  • Yaashikaa PR, Kumar PS. 2022. Bioremediation of hazardous pollutants from agricultural soils: a sustainable approach for waste management towards urban sustainability. Environ Pollut. 312:120031. doi: 10.1016/j.envpol.2022.120031.
  • Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11:359. doi: 10.3389/fpls.2020.00359.
  • Yang X, Qin X, Xie J, Li X, Xu H, Zhao Y. 2022. Study on the effect of Cr(VI) removal by stimulating indigenous microorganisms using molasses. Chemosphere. 308(Pt 2):136229. doi: 10.1016/j.chemosphere.2022.136229.
  • Yu Z, Xu X, Guo L, Yuzuak S, Lu Y. 2024. Physiological and biochemical effects of polystyrene micro/nano plastics on Arabidopsis thaliana. J Hazard Mater. 469:133861. doi: 10.1016/j.jhazmat.2024.133861.
  • Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Li Q, Wu L, Chen F, Li C, et al. 2021. Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth’s Future. 9(5):e1938E–e2020E. doi: 10.1029/2020EF001938.
  • Zhang T, Song B, Han G, Zhao H, Hu Q, Zhao Y, Liu H. 2023. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: a meta-analysis. Land Degrad Dev. 34(11):3340–3349. doi: 10.1002/ldr.4687.
  • Zhao Y, Hao Y, Cheng K, Wang L, Dong W, Liu Z, Yang F. 2024. Artificial humic acid mediated migration of phosphorus in soil: experiment and modelling. Catena. 238:107896. doi: 10.1016/j.catena.2024.107896.
  • Zhou Y, Jiang D, Ding D, Wu Y, Wei J, Kong L, Long T, Fan T, Deng S. 2022. Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history, in China. Environ Pollut. 307:119487. doi: 10.1016/j.envpol.2022.119487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.