92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the combined effect of heavy metals on accumulation efficiency of Salix alba raised on lead and cadmium contaminated soils

ORCID Icon, , , &

References

  • Ahmadi O, Pandey J, HademMoghadam N, AsgariLajayer B, Ghorbanpour M. 2020. Phytoremediation of contaminated soils using trees. In: Faisal M, Saquib Q, Alatar AA, editors. Cellular and molecular phytotoxicity of heavy metals. Springer, Cham: Nanotechnology in the life sciences. doi:10.1007/978-3-030-45975-8_21.
  • Al-Ghouti MA, Li J, Salamh Y, Al-Laqtah N, Walker G, Ahmad MNM. 2010. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater. 176(1–3):510–520. doi:10.1016/j.jhazmat.2009.11.059.
  • Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Toqeer A, Miklas S. 2015. Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int J Environ Res Public Health. 12(7):7400–7416. doi:10.3390/ijerph120707400.
  • Arora CL, Bajwa MS. 1994. Comparative study of some methods of oxidation of plant materials for elemental analysis. Curr Sci. 66(4):314–317.
  • Aslam M, Aslam A, Sheraz M, Ali B, Ulhassan Z, Najeeb U, Zhou W, Gill RA. 2021. Lead toxicity in cereals: mechanistic insight into toxicity, mode of action, and management. Front Plant Sci. 11:587785. doi:10.3389/fpls.2020.587785.
  • Baker AJM. 1981. Accumulators and excluders – Strategies in the response of plants to heavy metals. J Plant Nutr. 3(1–4):643–654. doi:10.1080/0190416810936286.
  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium and arsenic. Front Pharmacol. 12:643972. doi:10.3389/fphar.2021.643972.
  • Barakat MA. 2011. New trends in removing heavy metals from industrial wastewater. Arabian J Chem. 4(4):361–377. doi:10.1016/j.arabjc.2010.07.019.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for stress studies. Plant Soil. 39(1):205–207. doi:10.1007/BF00018060.
  • Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 6(9):e04691. doi:10.1016/j.heliyon.2020.e04691.
  • Chun SC, Paramasivan M, Chandrasekaran M. 2018. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front Microbiol. 9:2525. doi:10.3389/fmicb.2018.02525.
  • Clabeaux BL, Navarro DA, Aga DS, Bisson MA. 2013. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA. Ecotoxicol Environ Saf. 98:236–243. doi:10.1016/j.ecoenv.2013.08.014.
  • D’Souza L, Devi P, Divya Shridhar MP, Naik CG. 2008. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium induced changes in Padina tetrastromatica (Hauck). Anal Chem Insights. 3:117739010800300. doi:10.4137/117739010800300001.
  • Dalton TP, He L, Wang B, Miller ML, Jin L, Stringer KF, Chang Z, Baxter CS, Neber DW. 2005. Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA. 102(9):3401–3406. doi:10.1073/pnas.0406085102.
  • Datta SP, Golui D, Barman M, Meena MC, Shukla AK, Trivedi VK. 2019. Determination of micronutrients and pollutant elements in soils. In: Singh et al. editor. New Delhi, India: Soil analysis, Indian Society of Soil Science. p. 207–226.
  • El-Mahrouk EM, Eisa EA, Hegazi MA, Abdel-Gayed ME, Dewir YH, El, Mahrouk ME, Naidoo Y. 2019. Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). Horts. 54(7):1249–1257. doi:10.21273/HORTSCI14018-19.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. ScientificWorldJournal. 2015:756120. doi:10.1155/2015/756120.
  • Gajić G, Djurdjevic’ L, Kostic’ O, Jaric’ S, Mitrovic’ M, Pavlovic’ P. 2018. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci. 6:124. doi:10.3389/fenvs.2018.00124.
  • Goh EJ, Kim J, Kim W, Ha B, Kim SH, Kang SY, Seo YW, Kim DS. 2014. Physiological changes and anti-oxidative responses of Arabidopsis plants after acute and chronic γ-irradiation. Radiat Environ Biophys. 53(4):677–693. doi:10.1007/s00411-014-0562-5.
  • Gopal R, Rizvi AH. 2008. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere. 70(9):1539–1544. doi:10.1016/j.chemosphere.2007.08.043.
  • Griffiths PR, Haseth Ja D. 2007. Fourier transform infrared spectrometry, Vol. 171. Hoboken, NJ: John Wiley & Sons.
  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf. 211:111887. doi:10.1016/j.ecoenv.2020.111887.
  • Hammami H, Parsa M, Mohassel MHR, Rahimi S, Mijani S. 2016. Weeds ability to phytoremediate cadmium-contaminated soil. Int J Phytoremediation. 18(1):48–53. doi:10.1080/15226514.2015.1058336.
  • Hammami H, Parsa M, Bayat H, Aminifard MH. 2022. The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environ Exp Bot. 193:104670. doi:10.1016/j.envexpbot.2021.104670.
  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Ullah KMA, Khan TA. 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities – a review. Environ Sci Pollut Res Int. 26(13):12673–12688. doi:10.1007/s11356-019-04892-x.
  • Hatamian M, Nejad AR, Kafi M, Souri MK, Shahbazi K. 2020. Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chem Biol Technol Agric. 7(1):9. doi:10.1186/s40538-019-0173-0.
  • Hiscox JD, Israelstam GF. 1979. A Method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot. 57(12):1332–1334. doi:10.1139/b79-163.
  • Islam MM, Hoque MA, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y. 2009. Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol. 166(15):1587–1597. doi:10.1016/j.jplph.2009.04.002.
  • Ismail S, Khan F, Iqbal MZ. 2013. Phytoremediation: assessing tolerance of tree species against heavy metal (Pb and Cd) toxicity. Pak J Bot. 45(6):2181–2186.
  • Kabata-Pendias A, Pendias H. 1999. Biogeochemia pierwiastko’w s’ladowych. Biogeochemistry of trace elements, 3rd ed. Warsaw: Wyd.Naukowe PWN (in Polish).
  • Kaur B, Singh B, Kaur N, Singh D. 2018. Phytoremediation of cadmium-contaminated soil through multipurpose tree species. Agroforest Syst. 92:473–483. doi:10.1007/s10457-017-0141-2.
  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR. 2017. Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Singh DP, editor. Plant-Microbe interactions in agro-ecological perspectives. Singapore: Springer. p. 367–394. doi:10.1007/978-981-10-6593-4_15.
  • Kushwaha A, Hans N, Kumar S, Rani RA. 2018. Critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf. 147:1035–1045. doi:10.1016/j.ecoenv.2017.09.049.
  • Largo-Gosens A, Hernández-Altamirano M, García-Calvo L, Alonso-Simón A, Alvarez J, Acebes JL. 2014. Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls. Front Plant Sci. 5:303–330. doi:10.3389/fpls.2014.00303.
  • Li Y, Cheng X, Feng C, Huang X. 2023. Interaction of lead and cadmium reduced cadmium toxicity in Ficus parvifolia seedlings. Toxics. 11(3):271. doi:10.3390/toxics11030271.
  • Liang X, Zhang L, Natarajan SK, Becker DF. 2013. Proline mechanisms of stress survival. Antioxid Redox Signal. 19(9):998–1011. doi:10.1089/ars.2012.5074.
  • Liu LW, Li W, Song WP, Guo MX. 2018. Remediation techniques for heavy metal–contaminated soils: principles and applicability. Sci Total Environ. 633:206–219. doi:10.1016/j.scitotenv.2018.03.161.
  • Malik JA, Wani AA, Wani KA, Bhat MA. 2020. Role of white willow (Salix alba L.) for cleaning up the toxic metal pollution. In: Hakeem KR, editors. Bioremediation and biotechnology. Cham: Springer. p. 257–268. doi:10.1007/978-3-030-35691-0_12.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ. 769:145221. doi:10.1016/j.scitotenv.2021.145221.
  • Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A. 2011. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol. 31(12):1319–1334. doi:10.1093/treephys/tpr090.
  • Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI. 2011. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol. 14(5):554–562. doi:10.1016/j.pbi.2011.07.004.
  • Mleczek M, Goliński P, Krzesłowska M, Gąsecka M, Magdziak Z, Rutkowski P, Budzyńska S, Waliszewska B, Kozubik T, Karolewski Z, et al. 2017. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ Sci Pollut Res. 24(28):22183–22195. doi:10.1007/s11356-017-9842-3.
  • Nas FS, Ali M. 2018. The effect of lead on plants in terms of growing and biochemical parameters: a review. MOJES. 3(4):265–268. doi:10.15406/mojes.2018.03.00098.
  • Pandey R, Ghazi Ansari N, Lakhan Prasad R, Chandra Murthy R. 2014. Pb(II) removal from aqueous solution by Cucumis sativus (Cucumber) peel: kinetic, equilibrium & thermodynamic study. Am J Environ Protect. 2(3):51–58. doi:10.12691/env-2-3-1.
  • Patel VR, Patel PR, Kajal SS. 2010. Antioxidant activity of some selected medicinal plants in western region of India. Adv Biol Res. 4:23–26.
  • Peng H, Wang Y, Tan TL, Chen Z. 2020. Exploring the phytoremediation potential of water hyacinth by FTIR Spectroscopy and ICP-OES for treatment of heavy metal contaminated water. Int J Phytoremediation. 22(9):939–951. doi:10.1080/15226514.2020.1774499.
  • Pilipović A, Zalesny RS, Rončević S, Nikolić N, Orlović S, Beljin J, Katanić M. 2019. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J Environ Manage. 239:352–365. doi:10.1016/j.jenvman.2019.03.072.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 213:113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Rafiq MT, Aziz R, Yang X, Xiao W, Stoffella PJ, Saghir A, Azam M, Li T. 2014. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity. PLoS One. 9(11):e111461. doi:10.1371/journal.pone.0111461.
  • Saghi A, Rashed Mohassel MH, Parsa M, Hammami H. 2016. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Int J Phytoremediation. 18(4):387–392. doi:10.1080/15226514.2015.1109607.
  • Sangeetha P, Venkatachalam P, Geetha N. 2019. Exploring the phytoremediation potential of Calotropis gigantean L. using a combined FTIR and principal component analysis. In: Kumar M, Muthusamy A, Kumar V, Bhalla-Sarin N, editors. In vitro plant breeding novel agronomic traits. Singapore: Springer. doi:10.1007/978-981-32-9824-8_5.
  • Shi Q, Wang J, Zou J, Jiang Z, Wang J, Wu H, Jiang W, Liu D. 2015. Cadmium uptake and accumulation and its toxic effects on leaves in Hordeum vulgare. Fresenius. Environ Bull. 24:4504–4511.
  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN. 2011. Growth response and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manag. 31(1):115–123. doi:10.1016/j.wasman.2010.08.022.
  • Sivakumar P. 2016. Phytoremediation of tannery waste polluted soil using Hyptissuaveolens (Lamiaceae). Int J Pure App Biosci. 4(1):265–272. doi:10.18782/2320-7051.2223.
  • Srinivasan M, Sahi SV, Paulom JCF, Venkatachalam P. 2014. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]Botanical Studies. 55:54.
  • Thakur S, Singh NB, Sharma J, Thakur S, Gupta RK. 2014. Developing climate resilient Salix clones through control breeding. Ind Jrnl Gen Plnt Bree. 74(4s):572–577. doi:10.5958/0975-6906.2014.00892.X.
  • Usman K, Al-Ghouti MA, Abu-Dieye MH. 2019. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci Rep. 9(1):5658. doi:10.1038/s41598-019-42029-9.
  • Wani KA, Sofi ZM, Malik JA, Wani JA. 2020. Phytoremediation of heavy metals using Salix (Willows). In: Bhat R, Hakeem K, Dervash M., editors. Bioremediation and biotechnology. Cham, Switzerland: Springer, Vol 2, p. 161–174.
  • Willscher S, Jablonski L, Fona Z, Rahmi R, Wittig J. 2017. Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations. Hydrometallurgy. 168:153–158. doi:10.1016/j.hydromet.2016.10.016.
  • Yang J, Li K, Zheng W, Zhang H, Cao X, Lan Y, Yang C, Li C. 2015. Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz. BMC Genomics. 16(1):705. doi:10.1186/s12864-015-1923-4.
  • Yoon J, Cao X, Zhou Q, Ma LQ. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida Site. Sci Total Environ. 368(2-3):456–464. doi:10.1016/j.scitotenv.2006.01.016.
  • Zhang H, Xu Z, Guo K, Huo Y, He G, Sun H, Guan Y, Xu N, Yang W, Sun G. 2020. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in Tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol Environ Saf. 202:110856. doi:10.1016/j.ecoenv.2020.110856.
  • Zhang J, Yang N, Geng Y, Zhou J, Lei J. 2019. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L. RSC Adv. 9(36):20603–20611.) doi:10.1039/c9ra01986c.
  • Zhao H, Guan J, Liang Q, Zhang X, Hu H, Zhang J. 2021. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep. 11(1):9913. doi:10.1038/s41598-021-89322-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.