113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chitosan coated biomass waste-based magnetic hydrogel beads for the removal of methylene blue

ORCID Icon &

References

  • Abd Malek NN, Yousif E, Jawad AH. 2020. Optimization of adsorption parameters for reactive red 4 (rr4) removal by cross-linked chitosan-epichlorohydrin using boxbehnken design. Sci Lett. 14(1):83–95. doi: 10.24191/sl.v14i1.10608.
  • Abdulhameed AS, Jawad AH, Mohammad AT. 2019. Synthesis of chitosan-ethylene glycol diglycidyl ether/TiO2 nanoparticles for adsorption of reactive orange 16 dye using a response surface methodology approach. Bioresour Technol. 293:122071. doi: 10.1016/j.biortech.2019.122071.
  • Adekola FA, Ayodele SB, Inyinbor AA. 2019. Efficient rhodamine B removal using acidand alkaline-activated Musa paradisiaca biochar. Pol J Environ Stud. 28(5):3063–3070. doi: 10.15244/pjoes/94386.
  • Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J. 2011. Removal of methylene blue from aque ous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater. 198:282–290. doi: 10.1016/j.jhazmat.2011.10.041.
  • Alizadeh N, Shariati S, Besharati N. 2017. Adsorption of crystal violet and methylene blue on azolla and fig leaves modified with magnetite iron oxide nanoparticles. Int J Environ Res. 11(2):197–206. doi: 10.1007/s41742-017-0019-1.
  • Amor IB, Hemmami H, Laouini SE, Abdelaziz AG, Barhoum A. 2023. Influence of chitosan source and degree of deacetylation on antibacterial activity and adsorption of AZO dye from water. Biomass Convers Biorefin. 1–11. doi: 10.1007/s13399-023-03741-9.
  • Ben Amor I, Hemmami H, Laouini SE, Zeghoud S, Benzina M, Achour S, Naseef A, Alsalme A, Barhoum A. 2023. Use of insect-derived chitosan for the removal of methylene blue dye from wastewater: process optimization using a central composite design. Materials. 16(14):5049. doi: 10.3390/ma16145049.
  • Cho DW, Jeon BH, Chon CM, Schwartz FW, Jeong Y, Song H. 2015. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution. J Ind Eng Chem. 28:60–66. doi: 10.1016/j.jiec.2015.01.023.
  • Dinh V-P, Huynh T-D-T, Le HM, Nguyen V-D, Dao V-A, Hung NQ, Tuyen LA, Lee S, Yi J, Nguyen TD, et al. 2019. Insight into the adsorption mechanisms of methylene blue and chromium (III) from aqueous solution onto pomelo fruit peel. RSC Adv. 9(44):25847–25860. doi: 10.1039/C9RA04296B.
  • Esmaeili H, Foroutan R. 2019. Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J Dispers Sci Technol. 40(7):990–999. doi: 10.1080/01932691.2018.1489828.
  • Fan S, Wang Y, Wang Z, Tang J, Tang J, Li X. 2017. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism. J Environ Chem Eng. 5(1):601–611. doi: 10.1016/j.jece.2016.12.019.
  • Farch S, Yahoum MM, Toumi S, Tahraoui H, Lefnaoui S, Kebir M, Zamouche M, Amrane A, Zhang J, Hadadi A, et al. 2023. Application of walnut shell biowaste as an ınexpensive adsorbent for methylene blue dye: ısotherms, kinetics, thermodynamics, and modeling. Separations. 10(1):60. doi: 10.3390/separations10010060.
  • Hassani A, Soltani RDC, Karaca S, Khataee A. 2015. Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: ısotherm, kinetic and experimental design approaches. J Ind Eng Chem. 21:1197–1207. doi: 10.1016/j.jiec.2014.05.034.
  • Hussain NB, Akgül ET, Yılmaz M, Parlayıcı Ş, Hadibarata T. 2023. Preparation and characterization of low-cost activated carbon from Moringa oleifera chemically activated using ZnCl2 for the adsorption of bisphenol A. Int J Phytoremediation. 25(9):1199–1214. doi: 10.1080/15226514.2022.2144796.
  • Jawad A. 2020. Removal of reactive red 4 dye using chitosan-epichlorohydrin/TiO2 nanocomposite: application of response surface methodology. Sci Lett. 14(1):96–108. doi: 10.24191/sl.v14i1.10609.
  • Jawad AH, Mubarak NS, Abdulhameed AS. 2020a. Tunable Schiff's base-cross-linked chitosan composite for the removal of reactive red 120 dye: adsorption and mechanism study. Int J Biol Macromol. 142:732–741. doi: 10.1016/j.ijbiomac.2019.10.014.
  • Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM. 2020b. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol. 163:756–765. doi: 10.1016/j.ijbiomac.2020.07.014.
  • Jawad AH, Sahu UK, Jani NA, ALOthman ZA, Wilson LD. 2022. Magnetic crosslinked chitosan-tripolyphosphate/MgO/Fe3O4 nanocomposite for reactive blue 19 dye removal: optimization using desirability function approach. Surf Interfaces. 28:101698. doi: 10.1016/j.surfin.2021.101698.
  • Jiang W, Wang W, Pan B, Zhang Q, Zhang W, Lv L. 2014. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl Mater Interfaces. 6(5):3421–3426. doi: 10.1021/am405562c.
  • Karimi MH, Mahdavinia GR, Massoumi B, Baghban A, Saraei M. 2018. Ionically crosslinked magnetic chitosan/κ-carrageenan bioadsorbents for removal of anionic eriochrome black-T. Int J Biol Macromol. 113:361–375. doi: 10.1016/j.ijbiomac.2018.02.102.
  • Kamari M, Shafiee S, Salimi F, Karami C. 2019. Comparison of modified boehmite nanoplatelets and nanowires for dye removal from aqueous solution. DWT. 161:304–314. doi: 10.5004/dwt.2019.24295.
  • Lightbourn AV, Soliman KFA, Thomas RD. 2019. Crude Edible Fig (Ficus carica) leaf extract prevents diethylstilbestrol (DES)-ınduced DNA strand breaks in single-cell gel electrophoresis (SCGE)/comet assay: literature review and pilot study. J Bioequivalence Bioavailab. 11(2):19–28. doi: 10.35248/0975-0851.19.11.389.
  • Liu R, Yu H, Huang Y. 2005. Structure and morphology of cellulose in wheat straw. Cellulose. 12(1):25–34. doi: 10.1007/s10570-004-0955-8.
  • Mahmoudi S, Khali M, Benkhaled A, Benamirouche K, Baiti I. 2016. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from Ten Algerian Ficus carica L. varieties. Asian Pac J Trop Biomed. 6(3):239–245. doi: 10.1016/j.apjtb.2015.12.010.
  • Marrakchi F, Khanday WA, Asif M, Hameed BH. 2016. Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. Int J Biol Macromol. 93(Pt A):1231–1239. doi: 10.1016/j.ijbiomac.2016.09.069.
  • Mashkoor F, Nasar A, Jeong C. 2024. Magnetized chitosan nanocomposite as an effective adsorbent for the removal of methylene blue and malachite green dyes. Biomass Convers Biorefin. 14:313–325. doi: 10.1007/s13399-021-02282-3.
  • Melo BC, Paulino FAA, Cardoso VA, Pereira AGB, Fajardo AR, Rodrigues FHA. 2018. Cellulose nanowhiskers ımprove the methylene blue adsorption capacity of chitosan-g-poly(acrylic Acid) Hydrogel. Carbohydr Polym. 181:358–367. doi: 10.1016/j.carbpol.2017.10.079.
  • Mohan K, Rajan DK, Rajarajeswaran J, Divya D, Ganesan AR. 2023. Recent trends on chitosan based hybrid materials for wastewater treatment: a review. Curr Opin Environ Sci Health. 33:100473. doi: 10.1016/j.coesh.2023.100473.
  • Mohammad AT, Abdulhameed AS, Jawad AH. 2019. Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol. 129:98–109. doi: 10.1016/j.ijbiomac.2019.02.025.
  • Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS. 2020. Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: statistical optimization and mechanism study. Int J Biol Macromol. 161:503–513. doi: 10.1016/j.ijbiomac.2020.06.069.
  • Mustafa FH, ElRab EKMG, Kamel RM, Elshaarawy RF. 2023. Cost-effective removal of toxic methylene blue dye from textile effluents by new integrated crosslinked chitosan/aspartic acid hydrogels. Int J Biol Macromol. 248:125986. doi: 10.1016/j.ijbiomac.2023.125986.
  • Mustafa, Irfan, Rahmi, Ishmaturrahmi,. 2019. Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem J. 144:397–402. doi: 10.1016/j.microc.2018.09.032.
  • Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S. 2023. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies. Environ Monit Assess. 195(8):940. doi: 10.1007/s10661-023-11432-1.
  • Olafadehan OA, Abhulimen KE, Adeleke AI, Njoku CV, Amoo KO. 2019. Production and characterization of derived composite biosorbents from animal bone. Afr J Pure Appl Chem. 13(2):12–26. doi: 10.5897/AJPAC2018.0765.
  • Panneerselvam P, Morad N, Tan KA. 2011. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J Hazard Mater. 186(1):160–168. doi: 10.1016/j.jhazmat.2010.10.102.
  • Parlayıcı Ş. 2019. Modified peach stone shell powder for the removal of Cr (VI) from aqueous solution: synthesis, kinetic, thermodynamic, and modeling study. Int J Phytoremediation. 21(6):590–599. doi: 10.1080/15226514.2018.1540541.
  • Parlayıcı Ş. 2023a. Green biosorbents based on glutaraldehyde cross-linked alginate/sepiolite hydrogel capsules for methylene blue, malachite green and methyl violet removal. Polym Bull. 80(3):2457–2483. doi: 10.1007/s00289-022-04174-6.
  • Parlayıcı Ş. 2023b. Facile preparation of chitosan-coated biomass-based magsorbent beads for effective uptake of methylene blue from aqueous solution. Biomass Convers Biorefin. 1–24. doi: 10.1007/s13399-023-04065-4.
  • Parlayıcı Ş. 2024. Novel chitosan/citric acid modified pistachio shell/halloysite nanotubes cross-linked by glutaraldehyde biocomposite beads applied to methylene blue removal. Int J Phytoremediation. 26(1):11–26. doi: 10.1080/15226514.2023.2216309.
  • Parlayıcı Ş, Pehlivan E. 2019a. Removal of chromium (VI) from aqueous solution using chitosan doped with carbon nanotubes. Mater Today Proc. 18:1978–1985. doi: 10.1016/j.matpr.2019.06.689.
  • Parlayıcı Ş, Pehlivan E. 2019b. Fast decolorization of cationic dyes by nano-scale zero valent iron immobilized in sycamore tree seed pod fibers: kinetics and modelling study. Int J Phytoremediation. 21(11):1130–1144. doi: 10.1080/15226514.2019.1606786.
  • Pehlivan E, Parlayıcı Ş. 2021. Fabrication of a novel biopolymer-based nanocomposite (nanoTiO2-chitosan-plum kernel shell) and adsorption of cationic dyes. J Chemical Tech Biotech. 96(12):3378–3387. doi: 10.1002/jctb.6893.
  • Peng S, Liu Y, Xue Z, Yin W, Liang X, Li M, Chang J. 2017. Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb (II) and methylene blue from aqueous solution. Cellulose. 24(11):4793–4806. doi: 10.1007/s10570-017-1463-y.
  • Rahmah NL, Ismillayli N, Damayanti MG, Hermanto D. 2023. Synthesis activated carbon/chitosan/pectin composite as methylene blue adsorbent. AIP Conf Proc. 2720(1):040005. doi: 10.1063/5.0136932.
  • Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Al-Kahtani AA, ALOthman ZA. 2021a. Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J Environ Chem Eng. 9(3):105166. doi: 10.1016/j.jece.2021.105166.
  • Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Khan MR. 2021b. Synthesis of Schiff's base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: modeling and mechanism study. Sustain Chem Pharm. 20:100379. doi: 10.1016/j.scp.2021.100379.
  • Reghioua A, Barkat D, Jawad AH, Abdulhameed AS, Rangabhashiyam S, Khan MR, ALOthman ZA. 2021c. Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of remazol brilliant blue R dye removal. J Polym Environ. 29(12):3932–3947. doi: 10.1007/s10924-021-02160-z.
  • Ren Y, Abbood HA, He F, Peng H, Huang K. 2013. Magnetic EDTA- modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characteri- zation, and application in heavy metal adsorption. Chem Eng J. 226:300–311. doi: 10.1016/j.cej.2013.04.059.
  • Sakkayawong N, Thiravetyan P, Nakbanpote W. 2005. Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci. 286(1):36–42. doi: 10.1016/j.jcis.2005.01.020.
  • Salimi F, Eskandari M, Karami C. 2017. Investigation of methylene blue adsorption in wastewater using nano-zeolite modified with copper. DWT. 85:206–214. doi: 10.5004/dwt.2017.21248.
  • Salimi F, Rahimi H, Karami C. 2019. Removal of methylene blue from water solution by modified nanogoethite by Cu. DWT. 137:334–344. doi: 10.5004/dwt.2019.22922.
  • Santosa IK, Rizkiana MF. 2023. Adsorption of methylene blue by magnetic activated carbon/chitosan composites prepared from spent coffee grounds: kinetic, equilibrium and thermodynamic study. J. Biobas. Chem.3(1):66–75./ doi: 10.19184/jobc.v3i1.282.
  • Sivakumar R, Lee NY. 2022. Adsorptive removal of organic pollutant methylene blue using polysaccharide-based composite hydrogels. Chemosphere. 286(Pt 3):131890. doi: 10.1016/j.chemosphere.2021.131890.
  • Tan LN, Nguyen NCT, Trinh AMH, Do NH, Le KA, Le PK. 2023. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr (VI) removal. Sep Purif Technol. 304:122415. doi: 10.1016/j.seppur.2022.122415.
  • Terzioğlu P, Güney F, Parın FN, Şen İ, Tuna S. 2021. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications. Food Packag Shelf Life. 30:100742. doi: 10.1016/j.fpsl.2021.100742.
  • Tran HTT, Hoang LT, Tran HV. 2022. Electrochemical synthesis of graphene from waste discharged battery electrodes and ıts applications to preparation of graphene/Fe3O4/chitosan-nanosorbent for organic dyes removal. Zeitschrift Anorg Allge Chemie. 648(3):e202100313. doi: 10.1002/zaac.202100313.
  • Uddin MK, Nasar A. 2020. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci Rep. 10(1):7983. doi: 10.1038/s41598-020-64745-3.
  • Wu FC, Tseng RL, Juang RS. 2009. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 150(2–3):366–373. doi: 10.1016/j.cej.2009.01.014.
  • Yan H, Li H, Yang H, Li A, Cheng R. 2013. Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chem Eng J. 223:402–411. doi: 10.1016/j.cej.2013.02.113.
  • Yar A, Okbaz A, Parlayıcı Ş. 2023. A biocompatible, eco-friendly, and high-performance triboelectric nanogenerator based on sepiolite, bentonite, and kaolin decorated chitosan composite film. Nano Energy. 110:108354. doi: 10.1016/j.nanoen.2023.108354.
  • Yao J, Odelius K, Hakkarainen M. 2020. Carbonized lignosulfonate-based porous nanocomposites for adsorption of environmental contaminants. Funct Compos Mater. 1(1):1–12. doi: 10.1186/s42252-020-00008-8.
  • Wang H, Li J, Ding N, Zeng X, Tang X, Sun Y, Lei T, Lin L. 2020. Eco- friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chem Eng J. 386:124021. doi: 10.1016/j.cej.2020.124021.
  • Zein R, Purnomo JS, Ramadhani P, Alif MF, Safni S. 2022. Lemongrass (Cymbopogon nardus) leaves biowaste as an effective and low-cost adsorbent for methylene blue dyes removal: isotherms, kinetics, and thermodynamics studies. Sep Sci Technol. 57(15):2341–2357. doi: 10.1080/01496395.2022.2058549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.