87
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective

, ORCID Icon &

References

  • Chaudhary SK, Rai UN, Mishra K, Huang HG, Yang XE, Inouhe M, Gupta DK. 2011. Growth and metal accumulation potential of Vigna radiata L. grown under fly-ash amendments. Ecol Eng 37(10): 1583–1588. doi: 10.1016/j.ecoleng.2011.04.004.
  • Dwivedi S, Srivastava S, Mishra S, Dixit B, Kumar A, Tripathi RD. 2008. Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals. J Hazard Mater. 158(2-3):359–365. doi: 10.1016/j.jhazmat.2008.01.081.
  • Gajić G, Mitrović M, Pavlović P. 2019. Ecorestoration of fly ash deposits by native plant species at thermal power stations in Serbia. In Phytomanagement of polluted sites. Amsterdam: Elsevier. p. 113–177. doi: 10.1016/B978-0-12-813912-7.00004-1.
  • Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P. 2018. Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci. 6:124. doi: 10.3389/fenvs.2018.00124.
  • Gul Z, Akbar A, Leghari SK, Kakar AUR, Khan N, Muhammad J, Khan NA, Rehman ZU, Kamal R, Ali I. 2022. Daily dose standardization based on essential and nonessential trace element presence in Berberis baluchistanica Ahrendt bark, leaf, and root. Biomed Res Int. 2022:6811613–6811619. doi: 10.1155/2022/6811613.
  • Jackson M. 1967. Soil chemical analysis prentice. New Delhi: Hall of India Private Limited.
  • Jain S, Tembhurkar AR. 2022. Sustainable amelioration of fly ash dumps linking bio-energy plantation, bioremediation and amendments: a review. J Environ Manage. 314:115124. doi: 10.1016/j.jenvman.2022.115124.
  • Jindal A, Seth CS. 2022. Medicinal plants: the rising strategy for synthesis of modern medicine. IJPE. 8(01):76–80. doi: 10.18811/ijpen.v8i01.09.
  • Kulhari A, Sheorayan A, Bajar S, Sarkar S, Chaudhury A, Kalia RK. 2013. Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. Springerplus. 2(1):676. doi: 10.1186/2193-1801-2-676.
  • Kumar A, Jnanesha AC, Verma RK, Kumar D, Lal RK. 2022a. Phytoremediation, eco-restoration, and adaptive response of lemongrass (C. flexuosus Wats) grown on fly ash and vermicompost improved quality essential oil yield. Biochem Syst Ecol. 104:104457. doi: 10.1016/j.bse.2022.104457.
  • Kumar D, Dhankher OP, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi: 10.1016/j.jhazmat.2023.131418.
  • Kumar D, Seth CS. 2022b. Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium (VI) accumulation. Int J Phytoremediation. 24(6):1–10. doi: 10.1080/15226514.2021.1958747.
  • Kumar R, Thangaraju MM, Kumar M, Thul ST, Pandey VC, Yadav S, Singh L, Kumar S. 2021. Ecological restoration of coal fly ash–dumped area through bamboo plantation. Environ Sci Pollut Res. 28(25):33416–33432. doi: 10.1007/s11356-021-12995-7.
  • Mahar A, Wang P, Ali A, Guo Z, Awasthi MK, Lahori AH, Wang Q, Shen F, Li R, Zhang Z. 2016. Impact of CaO, fly ash, sulfur and Na2S on the (Im) mobilization and phytoavailability of Cd, Cu and Pb in contaminated soil. Ecotoxicol Environ Saf. 134P1:116–123. doi: 10.1016/j.ecoenv.2016.08.025.
  • Maiti D, Pandey VC. 2021. Metal remediation potential of naturally occurring plants growing on barren fly ash dumps. Environ Geochem Health. 43(4):1415–1426. doi: 10.1007/s10653-020-00679-z.
  • Maiti D, Prasad B. 2016. Revegetation of fly ash-a review with emphasis on grass-legume plantation and bioaccumulation of metals. Appl Ecol Environ Res. 14(2):185–212. doi: 10.15666/aeer/1402_185212.
  • Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments: an emerging remediation technology. Environ Health Perspect. 116(3):278–283. doi: 10.1289/ehp.10608.
  • Pandey VC, Prakash P, Bajpai O, Kumar A, Singh N. 2015. Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environ Sci Pollut Res Int. 22(4):2776–2787. doi: 10.1007/s11356-014-3517-0.
  • Pandey VC. 2012a. Invasive species based efficient green technology for phytoremediation of fly ash deposits. J Geochem Explor. 123:13–18. doi: 10.1016/j.gexplo.2012.05.008.
  • Pandey VC. 2012b. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf. 82:8–12. doi: 10.1016/j.ecoenv.2012.05.002.
  • Pandey VC, Mishra T. 2018. Assessment of Ziziphus mauritiana grown on fly ash dumps: prospects for phytoremediation but concerns with the use of edible fruit. Int J Phytoremediation. 20(12):1250–1256. doi: 10.1080/15226514.2016.1267703.
  • Pandey VC. 2020a. Phytomanagement of fly ash. New York: Elsevier. p. 1–334.
  • Pandey VC. 2013. Suitability of Ricinus communis L. cultivation for phytoremediation of fly ash disposal sites. Ecol Eng. 57:336–341. doi: 10.1016/j.ecoleng.2013.04.054.
  • Pandey VC, Singh N. 2010. Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ. 136(1-2):16–27. doi: 10.1016/j.agee.2009.11.013.
  • Pandey VC. 2020b. An appraisal on phytomanagement of fly ash with economic returns. In Phytomanagement of fly ash. New York: Elsevier. p. 289–321. doi: 10.1016/B978-0-12-818544-5.00010-9.
  • Rai UN, Sinha S, Tripathi RD, Chandra P. 1995. Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng. 5(1):5–12. doi: 10.1016/0925-8574(95)00011-7.
  • Subbiah BV, Asija GL. 1956. A rapid procedure for the estimation of available nitrogen in soils. Curr Sci. 25:259–260.
  • Tondoh JE, Koné AW, N'Dri JK, Tamene L, Brunet D. 2013. Changes in soil quality after subsequent establishment of Chromolaena odorata fallows in humid savannahs, Ivory Coast. Catena. 101:99–107. doi: 10.1016/j.catena.2012.10.005.
  • Toth SJ, Prince AL. 1949. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci. 67(6):439–446. doi: 10.1097/00010694-194906000-00003.
  • Tripathi P, Dwivedi S, Mishra A, Kumar A, Dave R, Srivastava S, Shukla MK, Srivastava PK, Chakrabarty D, Trivedi PK, et al. 2012. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants. Environ Monit Assess. 184(5):2617–2631. doi: 10.1007/s10661-011-2139-y.
  • United state Environmental Protection Agency (USEPA). Risk-based concentration table. https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search [accessed 2024 Feb 22].
  • Yadav S, Pandey VC, Singh L. 2021. Ecological restoration of fly-ash disposal areas: challenges and opportunities. Land Degrad Dev. 32(16):4453–4471. doi: 10.1002/ldr.4064.
  • Yadav S, Pandey VC, Kumar M, Singh L. 2022. Plant diversity and ecological potential of naturally colonizing vegetation for ecorestoration of fly ash disposal area. Ecol Eng. 176:106533. doi: 10.1016/j.ecoleng.2021.106533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.