440
Views
10
CrossRef citations to date
0
Altmetric
Articles

A space–time parallel framework for fine-scale visualization of pollen levels across the Eastern United States

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 428-440 | Received 25 Apr 2018, Accepted 21 Aug 2018, Published online: 09 Oct 2018

References

  • Aguilera, F., Dhiab, A. B., Msallem, M., Orlandi, F., Bonofiglio, T., Ruiz-Valenzuela, L., García-Mozo, H. (2015). Airborne-pollen maps for olive-growing trees throughout the Mediterranean region: Spatio-temporal interpretation. Aerobiologia, 31, 421–434. doi:10.1007/s10453-015-9375-5
  • Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time-oriented data. London: Springer.
  • Alba, F., Nieto-Lugilde, D., Comtois, P., De La Guardia, C. D., De Linares, C., & Ruiz, L. (2006). Airborne-pollen map for Olea europaea L. in eastern Andalusia (Spain) using GIS: Estimation models. Aerobiologia, 22, 107–116. doi:10.1007/s10453-006-9024-0
  • Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., … Tominski, C. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24, 1577–1600. doi:10.1080/13658816.2010.508043
  • Bleisch, S. (2012). 3D Geovisualization-definition and structures for the assessment of usefulness. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I–2, 129–134. doi:10.5194/isprsannals-I-2-129-2012
  • Brewer, C. A., Hatchard, G. W., & Harrower, M. A. (2003). ColorBrewer in print: A catalog of color schemes for maps. Cartography and Geographic Information Science, 30, 5–32. doi:10.1559/152304003100010929
  • Burr, M. L., Emberlin, J. C., Treu, R., Cheng, S., & Pearce, N. E.; ISAAC Phase One Study Group. (2003). Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC). Clinical and Experimental Allergy, 33, 1675–1680. doi:10.1111/j.1365-2222.2003.01816.x
  • Centers for Disease Control and Prevention. (2015). Allergies and Hay fever. Retrieved from https://www.cdc.gov/nchs/fastats/allergies.htm
  • Charpin, D., & Caillaud, D. (2014). Épidémiologie de l’allergie pollinique. Revue des Maladies Respiratoires, 31(4), 365–374. doi:10.1016/j.rmr.2013.12.006
  • D’Amato, G., Cecchi, L., D’Amato, M., & Annesi-Maesano, I. (2014). Climate change and respiratory diseases. European Respiratory Review, 23(132), 161–169. doi:10.1183/09059180.00001714
  • Dahl, Å., Galán, C., Hajkova, L., Pauling, A., Sikoparija, B., Smith, M., & Vokou, D. (2013). The onset, course and intensity of the pollen season. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen (pp. 29–70). Dordrecht, Netherlands: Springer.
  • DellaValle, C. T., Triche, E. W., & Bell, M. L. (2012). Spatial and temporal modeling of daily pollen concentrations. International Journal Biometeorology, 56, 183–194. doi:10.1007/s00484-011-0412-y
  • Delmelle, E., Jia, M., Dony, C., Casas, I., & Tang, W. (2015). Space-time visualization of dengue fever outbreaks. In P. Kanaroglou, E. Delmelle, D. Ghosh, A. Paez, & S. Elloitt (Eds.), Spatial analysis in health geography (pp. 1–20). Burlington, VT: Ashgate.
  • Delmelle, E., Dony, C., Casas, I., Jia, M., & Tang, W. (2014). Visualizing the impact of space-time uncertainties on dengue fever patterns. International Journal of Geographical Information Science, 28(5), 1107–1127. doi:10.1080/13658816.2013.871285
  • Delmelle, E. M. (2014). Spatial sampling. In M. M. Fisher & P. Nijkamp (Eds.), Handbook of regional science (pp. 1385–1399). Berlin: Springer.doi:10.1007/978-3-642-23430-9_73
  • Demšar, U., & Virrantaus, K. (2010). Space–Time density of trajectories: Exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24, 1527–1542. doi:10.1080/13658816.2010.511223
  • Ding, Y., & Densham, P. J. (1996). Spatial strategies for parallel spatial modelling. International Journal of Geographical Information Systems, 10, 669–698. doi:10.1080/02693799608902104
  • Eaglin, T., Cho, I., & Ribarsky, W. (2017, January). Space-time kernel density estimation for real-time interactive visual analytics. Proceedings of the 50th Hawaii International Conference on System Sciences, Waikoloa, HI. doi:10.24251/HICSS.2017.000
  • Fang, T. B., & Lu, Y. (2011). Constructing a near real-time space-time cube to depict urban ambient air pollution scenario. Transactions in GIS, 15, 635–649. doi:10.1007/s00477-016-1274-y
  • Fouedjio, F. (2017). Second-order non-stationary modeling approaches for univariate geostatistical data. Stochastic Environmental Research and Risk Assessment, 31, 1887–1906.doi:10.1111/j.1467-9671.2011.01283.x
  • Gabriel, E. (2014). Estimating second-order characteristics of inhomogeneous spatio-temporal point processes: Influence of edge correction methods and intensity estimates. Methodology and Computing in Applied Probability, 16, 411–431. doi:10.1007/s11009-013-9358-3
  • Garcia-Mozo, H., Galan, C., & Vazquez, L. (2006). The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia, 22, 95. doi:10.1007/s10453-006-9026-y
  • Guo, L., Lei, L., Zeng, Z.-C., Zou, P., Liu, D., & Zhang, B. (2015). Evaluation of spatio-temporal variogram models for mapping XCO2 using satellite observations: A case study in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 376–385. doi:10.1109/JSTARS.2014.2363019
  • Haas, T. C. (1990). Kriging and automated variogram modeling within a moving window. Atmospheric Environment. Part A. General Topics, 24(7), 1759–1769. doi:10.1016/0960-1686(90)90508-K
  • Haase, P. (1995). Spatial pattern analysis in ecology based on Ripley’s K‐function: Introduction and methods of edge correction. Journal of Vegetation Science, 6(4), 575–582. doi:10.2307/3236356
  • Hägerstrand, T. (1970). What about people in regional science? Papers in Regional Science, 24(1), 6–21. doi:10.1111/j.1435-5597.1970.tb01464.x
  • Hohl, A., Delmelle, E., Tang, W., & Casas, I. (2016a). Accelerating the discovery of space-time patterns of infectious diseases using parallel computing. Spatial and Spatio-Temporal Epidemiology, 19, 10–20. doi:10.1016/j.sste.2016.05.002
  • Hohl, A., Casas, I., Delmelle, E. M., & Tang, W. (2016b). Hybrid indexing for parallel analysis of spatiotemporal point patterns. Proceedings of the 9th international conference on geographic information science. doi:10.21433/B3114824R3WG
  • Hohl, A., Delmelle, E. M., & Tang, W. (2015). Spatiotemporal domain decomposition for massive parallel computation of space-time kernel density. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4/W2(4), 7–11. doi:10.5194/isprsannals-II-4-W2-7-2015
  • Hu, H., & Shu, H. (2015). An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging interpolation. Computers & Geosciences, 78, 44–52. doi:10.1016/j.cageo.2015.02.011
  • Huang, F., Liu, D., Tan, X., Wang, J., Chen, Y., & He, B. (2011). Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS. Computers & Geosciences, 37(4), 426–434. doi:10.1016/j.cageo.2010.05.024
  • Jochner, S. C., Sparks, T. H., Estrella, N., & Menzel, A. (2012). The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). International Journal of Biometeorology, 56(2), 387–394. doi:10.1007/s00484-011-0444-3
  • Kwan, M. P. (2004). GIS methods in time‐geographic research: Geocomputation and geovisualization of human activity patterns. Geografiska Annaler: Series B, Human Geography, 86(4), 267–280. doi:10.1111/j.0435-3684.2004.00167.x
  • Kyriakidis, P. C., & Journel, A. G. (1999). Geostatistical space–Time models: A review. Mathematical Geology, 31, 651–684. doi:10.1023/A:1007528426688
  • León Ruiz, E. J., García Mozo, H., Domínguez Vilches, E., & Galán, C. (2012). The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) Link. The Scientific World Journal, 2012, 1–19. 624247. doi:10.1100/2012/624247.
  • Levetin, E., & Van de Water, P. K. (2003). Pollen count forecasting. Immunology and Allergy Clinics, 23(3), 423–442. doi:10.1016/S0889-8561(03)00019-5
  • Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8, 29–37. doi:10.1109/38.511
  • Li, L., Losser, T., Yorke, C., & Piltner, R. (2014). Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fineparticulate matter PM2.5 in the contiguous U.S. Using parallel programming and k-d tree. International Journal of Environmental Research and Public Health, 11, 9101–9141. doi:10.3390/ijerph110909101
  • Miller, H. J. (2005). A measurement theory for time geography. Geographical Analysis, 37(1), 17–45. doi:10.1111/j.1538-4632.2005.00575.x
  • Nakaya, T., & Yano, K. (2010). Visualising crime clusters in a space‐time cube: An exploratory data‐analysis approach using space‐time kernel density estimation and scan statistics. Transactions in GIS, 14(3), 223–239. doi:10.1111/j.1467-9671.2010.01194.x
  • Nowosad, J. (2016). Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus and Betula. International Journal of Biometeorology, 60(6), 843–855. doi:10.1007/s00484-015-1077-8
  • Nowosad, J., Stach, A., Kasprzyk, I., Weryszko-Chmielewska, E., Piotrowska-Weryszko, K., Puc, M., ... Majkowska-Wojciechowska, B. (2016). Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count. Aerobiologia, 32(3), 453–468. doi:10.1007/s10453-015-9418-y
  • Pebesma, E. J., De Jong, K., & Briggs, D. (2007). Interactive visualization of uncertain spatial and spatio-temporal data under different scenarios: An air quality example. International Journal of Geographical Information Science, 21(5), 515–527. doi:10.1080/13658810601064009
  • Pfister, G. F. (2001). An introduction to the infiniband architecture. High Performance Mass Storage and Parallel I/O, 617–632.
  • Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems (pp. 532–538). New York: Springer.
  • Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 172–212. https://www.jstor.org/stable/2984796
  • Rojo, J., & Pérez-Badia, R. (2015). Spatiotemporal analysis of olive flowering using geostatistical techniques. Science of the Total Environment, 505, 860–869. doi:10.1016/j.scitotenv.2014.10.022
  • Sagl, G., Delmelle, E., & Delmelle, E. (2014). Mapping collective human activity in an urban environment based on mobile phone data. Cartography and Geographic Information Science, 41(3), 272–285. doi:10.1080/15230406.2014.888958
  • Sahu, S. K. (2012). Hierarchical Bayesian models for space–time air pollution data. In C. R. Rao & V. G. Rao (Eds.), Handbook of Statistics (Vol. 30, pp. 477–495). Oxford: Elsevier.
  • Sahu, S. K., Gelfand, A. E., & Holland, D. M. (2007). High-resolution space–Time ozone modeling for assessing trends. Journal of the American Statistical Association, 102(480), 1221–1234. doi:10.1198/016214507000000031
  • Shaddick, G., & Wakefield, J. (2002). Modelling daily multivariate pollutant data at multiple sites. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(3), 351–372. doi:10.1111/1467-9876.00273
  • Shepherd, I. D. (2008). Travails in the third dimension: A critical evaluation of three-dimensional geographical visualization. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: Concepts, tools and applications (pp. 199–222). Chichester, UK: Wiley.
  • Sherman, M. (2011). Spatial statistics and spatio-temporal data: Covariance functions and directional properties. Hoboken, NJ: Wiley.
  • Siska, P., Bryant, V. M., & Hung, I. (2006). Geospatial analysis of southern pine biome and pollen distribution patterns in Southeastern United States. Geograficky Casopis Slovenskej Akademie Vied, 58(4), 239.
  • Siska, P. P., Hung, I., & Bryant Jr, V. M. (2012). the mapping of composite pollen from point sampled data and cartographic generalization. Papers of the Applied Geography Conferences, 35, 191–200. Preprint available at: https://scholarworks.sfasu.edu/spatialsci/44/
  • Smith, R. L., Kolenikov, S., & Cox, L. H. (2003). Spatiotemporal modeling of PM2. 5 data with missing values. Journal of Geophysical Research: Atmospheres, 108(D24). doi:10.1029/2002JD002914
  • St. John, M., Cowen, M. B., Smallman, H. S., & Oonk, H. M. (2001). The use of 2D and 3D displays for shape-understanding versus relative-position tasks. Human Factors, 43(1), 79–98. doi:10.1518/001872001775992534
  • Thakur, S., & Hanson, A. J. (2010). A 3D visualization of multiple time series on maps. In Information Visualisation (IV), 2010 14th International Conference (pp. 336–343). Piscataway, NJ: IEEE. doi: 10.1109/IV.2010.54
  • Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2(2), 18–30.
  • van Kreveld, M. (2008). Working group V — Visualization — Position paper: 3D geo-visualization. In P. van Oosterom, S. Zlatanova, D. Penninga, & E. M. Fendel (Eds.), Advances in 3D geoinformation systems, lecture notes in geoinformation and cartography Berlin: Springer. doi:10.1007/978-3-540-72135-2_27
  • Wheatley, L. M., & Togias, A. (2015). Allergic Rhinitis. The New England Journal of Medicine, 372(5), 456–463. doi:10.1056/NEJMcp1412282
  • Whelan, B. M., McBratney, A. B., & Minasny, B. (2002). Vesper 1.5–Spatial prediction software for precision agriculture. Precision Agriculture, Proc. 6th Int. Conf. on Precision doi:10.1044/1059-0889(2002/er01)
  • Wikle, C. K., & Royle, J. A. (1999). Space: Time dynamic design of environmental monitoring networks. Journal of Agricultural, Biological, and Environmental Statistics, 4, 489–507. doi:10.2307/1400504
  • Wilkinson, B., & Allen, M. (2005). Parallel programming: techniques and applications using networked workstations and parallel computers. Upper Saddle River, NJ: Pearson/Prentice Hall.
  • Yamada, I., & Rogerson, P. A. (2003). An empirical comparison of edge effect correction methods applied to K‐function analysis. Geographical Analysis, 35(2), 97–109. doi:10.1111/j.1538-4632.2003.tb01103.x
  • Zhou, Y., Dao, T. H. D., Thill, J. C., & Delmelle, E. (2015). Enhanced 3D visualization techniques in support of indoor location planning. Computers, Environment and Urban Systems, 50, 15–29. doi:10.1016/j.compenvurbsys.2014.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.