606
Views
1
CrossRef citations to date
0
Altmetric
Articles

Virtual reality for geospatial education: immersive technologies enhance sense of embodiment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 233-248 | Received 18 Mar 2022, Accepted 05 Sep 2022, Published online: 14 Nov 2022

References

  • Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 358–376). Cambridge University Press.
  • Alibali, M. W., Boncoddo, R., & Hostetter, A. B. (2014). Gesture in reasoning: An embodied perspective. In Lawrence Shapiro (Ed.), The Routledge handbook of embodied cognition (pp. 168–177). Routledge.
  • Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating learning from non-immersive to immersive media: Using eeg to investigate the effects of environmental embeddedness on reading in virtual reality. Computers & Education, 164, 104122. https://doi.org/10.1016/j.compedu.2020.104122
  • Bagher, M. M., Sajjadi, P., Carr, J., La Femina, P., & Klippel, A. (2020). Fostering penetrative thinking in geosciences through immersive experiences: A case study in visualizing earthquake locations in 3D. In 2020 6th International Conference of the Immersive Learning Research Network (iLRN), (pp. 132–139).
  • Bagher, M., Sajjadi, P., Wallgrün, J., La Femina, P., & Klippel, A. (2021). Move the object or move the user: The role of interaction techniques on embodied learning in vr. front. In Virtual real (Vol. 2, pp. 695312). https://doi.org/10.3389/frvir
  • Barsalou, L. W. (1999). Perceptual symbol systems. The Behavioral and Brain Sciences, 22(4), 577–660. https://doi.org/10.1017/S0140525X99002149
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
  • Biocca, F. (1999). The cyborg’s dilemma: Progressive embodiment in virtual environments. Human Factors in Information Technology, 3(2), 113–144.
  • Blascovich, J., & Bailenson, J. (2011). Infinite reality: Avatars, eternal life, new worlds, and the dawn of the virtual revolution. William Morrow & Co.
  • Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36–43. https://doi.org/10.1109/MC.2007.257
  • Byers, C., & Woo, A. (2015). 3D data visualization: The advantages of volume graphics and big data to support geologic interpretation. Interpretation, 3(3), SX29–39. https://doi.org/10.1190/INT-2014-0257.1
  • Clifton, P. G., Chang, J.S.-K, Yeboah, G., Doucette, A., Chandrasekharan, S., Nitsche, M., Mazalek, A., Welsh, T., & Mazalek, A. (2016). Design of embodied interfaces for engaging spatial cognition. Cognitive Research: Principles and Implications, 1(1), 1–15. https://doi.org/10.1186/s41235-016-0032-5
  • Coffin, M. F., Gahagan, L. M., & Lawver, L. A. (1997). Present-day plate boundary digital data compilation (Tech. Rep). Institute for Geophysics.
  • Çöltekin, A., Lochhead, I., Madden, M., Christophe, S., Devaux, A., Pettit, C., Lock, O., Shukla, S., Herman, L., Stachoň, Z., Kubíček, P., Snopková, D., Bernardes, S., & Hedley, N. (2020). Extended reality in spatial sciences: A review of research challenges and future directions. ISPRS International Journal of Geo-Information, 9(7), 439. https://doi.org/10.3390/ijgi9070439
  • Dalgarno, B., & Lee, M. J. (2010). What are the learning affordances of 3-d virtual environments? British Journal of Educational Technology, 41(1), 10–32. https://doi.org/10.1111/j.1467-8535.2009.01038.x
  • Dixon, M., & Senior, K. (2011). Appearing pedagogy: From embodied learning and teaching to embodied pedagogy. Pedagogy, Culture & Society, 19(3), 473–484. https://doi.org/10.1080/14681366.2011.632514
  • Dübel, S., Röhlig, M., Schumann, H., & Trapp, M. (2014). 2D and 3D presentation of spatial data: A systematic review. In 2014 IEEE VIS International Workshop on R3DVis (3DVis), Paris, France, (pp. 11–18).
  • Fribourg, R., Argelaguet, F., Lécuyer, A., & Hoyet, L. (2020). Avatar and sense of embodiment: Studying the relative preference between appearance, control and point of view. IEEE Transactions on Visualization and Computer Graphics, 26(5), 2062–2072. https://doi.org/10.1109/TVCG.2020.2973077
  • Ghaemi, Z., Engelke, U., Ens, B., & Jenny, B. (2022). Proxemic maps for immersive visualization. Cartography and Geographic Information Science, 49(3), 205–219. https://doi.org/10.1080/15230406.2021.2013946
  • Giannopoulos, I., Komninos, A., & Garofalakis, J. (2017). Natural interaction with large map interfaces in vr. In Proceedings of the 21st Pan-Hellenic Conference on Informatics, Larissa, Greece, (pp. 1–6).
  • Global Volcanism Program, 2013. Volcanoes of the World, v. 4.11.2 (02 Sep). Venzke, E. (Ed.), Smithsonian Institution. Downloaded 02 Sep https://doi.org/10.5479/si.GVP.VOTW4-2013
  • Gonzalez-Franco, M., & Peck, T. C. (2018). Avatar embodiment. Towards a standardized questionnaire. Frontiers in Robotics and AI, 5, 74. https://doi.org/10.3389/frobt.2018.00074
  • Gramann, K. (2013). Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spatial Cognition & Computation, 13(1), 1–25. https://doi.org/10.1080/13875868.2011.589038
  • Hannula, K. A. (2019). Do geology field courses improve penetrative thinking? Journal of Geoscience Education, 67(2), 143–160. https://doi.org/10.1080/10899995.2018.1548004
  • Hedges, L. V., & Olkin, I. (2014). Statistical methods for meta-analysis. Academic press.
  • Ioannou, M., Ioannou, A., Georgiou, Y., & Retalis, S. (2020). Designing an orchestrating the classroom experience for technology-enhanced embodied learning. In M. Gresalfi & I. Horn (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020 (Vol. 2, pp. 1079–1086). Nashville, Tennessee: International Society of the Learning Sciences.
  • Jaeger, A. J., Wiley, J., & Moher, T. (2016). Leveling the playing field: Grounding learning with embedded simulations in geoscience. Cognitive Research: Principles and Implications, 1(1), 1–14. https://doi.org/10.1186/s41235-016-0011-x
  • Jerald, J. (2016). The VR book: Human-centered design for virtual reality. Morgan & Claypool.
  • Johnson-Glenberg, M. C. (2018). Immersive VR and education: Embodied design principles that include gesture and hand controls. Frontiers in Robotics and AI, 5, 1–19. https://doi.org/10.3389/frobt.2018.00081
  • Johnson-Glenberg, M. C., Bartolomea, H., & Kalina, E. (2021). Platform is not destiny: Embodied learning effects comparing 2D desktop to 3D virtual reality stem experiences. Journal of Computer Assisted Learning, 37(5), 1263–1284. https://doi.org/10.1111/jcal.12567
  • Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86–104. https://doi.org/10.1037/a0034008
  • Johnson-Glenberg, M. C., Megowan-Romanowicz, C., Birchfield, D. A., & Savio- Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in Psychology, 7, 1819. https://doi.org/10.3389/fpsyg.2016.01819
  • Kelly, J. W., & McNamara, T. P. (2010). Reference frames during the acquisition and development of spatial memories. Cognition, 116(3), 409–420. https://doi.org/10.1016/j.cognition.2010.06.002
  • Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment in virtual reality. Presence: Teleoperators and Virtual Environments, 21(4), 373–387. https://doi.org/10.1162/PRES_a_00124
  • Kosmas, P., Ioannou, A., & Zaphiris, P. (2019). Implementing embodied learning in the classroom: Effects on children’s memory and language skills. Educational Media International, 56(1), 59–74. https://doi.org/10.1080/09523987.2018.1547948
  • Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 27–50. https://doi.org/10.1111/j.1468-2885.2004.tb00302.x
  • Lee, E. A. -L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424–1442. https://doi.org/10.1016/j.compedu.2010.06.006
  • Levinson, S. C. (1996). Frames of reference and molyneux’s question: Crosslinguistic evidence. In Paul Bloom, Merrill F. Garrett, Lynn Nadel and Mary A. Peterson, (Eds.), Language and Space, 109, 169. MIT Press.
  • Libarkin, J. C., & Brick, C. (2002). Research methodologies in science education: Visualization and the geosciences. Journal of Geoscience Education, 50(4), 449–455. https://doi.org/10.5408/1089-9995-50.4.449
  • Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174–187. https://doi.org/10.1016/j.compedu.2016.01.001
  • Lin, C.-R., Loffin, R., & Stark, T. (1998). Virtual reality for geosciences visualization. In Proceedings 3rd Asia Pacific Computer Human Interaction (Cat. No. 98EX110), Kangawa, Japan, (pp. 196–201).
  • Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2021). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719. https://doi.org/10.1037/edu0000473
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83(1), 33–54. https://doi.org/10.1002/(SICI)1098-237X(199901)83:1<33:AID-SCE2>3.0.CO;2-Z
  • Meilinger, T., Frankenstein, J., Simon, N., Bülthoff, H. H., & Bresciani, J.-P. (2016). Not all memories are the same: Situational context influences spatial recall within one’s city of residency. Psychonomic Bulletin & Review, 23(1), 246–252. https://doi.org/10.3758/s13423-015-0883-7
  • Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. The Quarterly Journal of Experimental Psychology, 67(3), 542–569. https://doi.org/10.1080/17470218.2013.821145
  • Montello, D. R. (1993). Scale and multiple psychologies of space. In G. Goos, J. Hartmanis, A. U. Frank, & I. Campari (Eds.), Spatial information theory a theoretical basis for GIS (Vol. 716, pp. 312–321). Springer.
  • Newbury, R., Satriadi, K. A., Bolton, J., Liu, J., Cordeil, M., Prouzeau, A., & Jenny, B. (2021). Embodied gesture interaction for immersive maps. Cartography and Geographic Information Science, 1–15.
  • Newcombe, N. S., & Shipley, T. F. (2015). Thinking about spatial thinking: New typology, new assessments. In John S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 179–192). Springer.
  • Ormand, C. J., Manduca, C., Shipley, T. F., Tikoff, B., Harwood, C. L., Atit, K., & Boone, A. P. (2014). Evaluating geoscience students’ spatial thinking skills in a multi-institutional classroom study. Journal of Geoscience Education, 62(1), 146–154. https://doi.org/10.5408/13-027.1
  • Ratan, R., & Sah, Y. J. (2015). Leveling up on stereotype threat: The role of avatar customization and avatar embodiment. Computers in Human Behavior, 50, 367–374. https://doi.org/10.1016/j.chb.2015.04.010
  • Riener, C., & Stefanucci, J. (2014). Perception and/for/with/as action. In Lawrence Shapiro (Ed.), The Routledge Handbook of Embodied Cognition, (pp. 99–107). Routledge.
  • Ritzwoller, M. H., Barmin, M. P., Villasenor, A., Levshin, A. L., & Engdahl, E. R. (2002). Pn and sn tomography across Eurasia to improve regional seismic event locations. Tectonophysics, 358(1–4), 39–55. https://doi.org/10.1016/S0040-1951(02)00416-X
  • Santos-Torres, A., Zarraonandia, T., Díaz, P., & Aedo, I. (2018). Exploring interaction mechanisms for map interfaces in virtual reality environments. In Proceedings of the XIX International Conference on Human Computer Interaction, Palma, Spain, (pp. 1–7).
  • Scoble, R., & Israel, S. (2017). The fourth transformation: How augmented reality and artificial intelligence change everything. Patrick Brewster Press.
  • Shapiro, L. (2007). The embodied cognition research programme. Philosophy Compass, 2(2), 338–346. https://doi.org/10.1111/j.1747-9991.2007.00064.x
  • Shapiro, L. (2014). The Routledge handbook of embodied cognition. Routledge.
  • Shusterman, A., & Li, P. (2016). Frames of reference in spatial language acquisition. Cognitive Psychology, 88, 115–161. https://doi.org/10.1016/j.cogpsych.2016.06.001
  • Skulmowski, A., & Rey, G. D. (2018). Embodied learning: Introducing a taxonomy based on bodily engagement and task integration. Cognitive Research: Principles and Implications, 3(1), 6. https://doi.org/10.1186/s41235-018-0092-9
  • Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society of B, 364(1535), 3549–3557. https://doi.org/10.1098/rstb.2009.0138
  • Slater, M., Spanlang, B., & Corominas, D. (2010). Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Transactions on Graphics, 29(4), 1. https://doi.org/10.1145/1778765.1778829
  • Smyrnaiou, Z., Sotiriou, M., Georgakopoulou, E., & Papadopoulou, O. (2016). Connecting embodied learning in educational practice to the realisation of science educational scenarios through performing arts. In Angelos Lazoudis, Stephanos Cherouvis (Ed.), INSPIRING SCIENCE EDUCATION conference, Pallini, Greece, 31, 31–38.
  • Sousa Santos, B., Dias, P., Pimentel, A., Baggerman, J.-W., Ferreira, C., Silva, S., & Madeira, J. (2009). Head-mounted display versus desktop for 3D navigation in virtual reality: A user study. Multimedia Tools and Applications, 41(1), 161–181. https://doi.org/10.1007/s11042-008-0223-2
  • Southgate, E. (2020). Conceptualising embodiment through virtual reality for education. In 2020 6th International Conference of the Immersive Learning Research Network (IlRN) (pp. 38–45).
  • Spur, M., Tourre, V., David, E., Moreau, G., & Le Callet, P. (2020). Mapstack: Exploring multilayered geospatial data in virtual reality. In 11th International Conference on Information Visualization Theory and Applications (pp. 88–99).
  • Srivastava, P., Rimzhim, A., Vijay, P., Singh, S., & Chandra, S. (2019). Desktop VR is better than non-ambulatory HMD VR for spatial learning. Frontiers in Robotics and AI, 6, 50. https://doi.org/10.3389/frobt.2019.00050
  • Stolz, S. A. (2015). Embodied learning. Educational Philosophy and Theory, 47(5), 474–487. https://doi.org/10.1080/00131857.2013.879694
  • Thurmond, J. B., Drzewiecki, P. A., & Xu, X. (2005). Building simple multiscale visualizations of outcrop geology using virtual reality modeling language (vrml). Computers & Geosciences, 31(7), 913–919. https://doi.org/10.1016/j.cageo.2005.03.007
  • Tinker, S. W. (1996). Building the 3-D jigsaw puzzle: Applications of sequence stratigraphy to 3-D reservoir characterization, permian basin. AAPG Bulletin, 80(4), 460–484. https://doi.org/10.1306/64ED8818-1724-11D7-8645000102C1865D
  • Vorderer, P., Wirth, W., Gouveia, F. R., Biocca, F., Saari, T., & J¨ancke, L. (2004). Mec spatial presence questionnaire. Retrieved September 18, 2015.
  • Weise, M., Zender, R., & Lucke, U. (2019). A comprehensive classification of 3D selection and manipulation techniques. In Proceedings of Mensch und Computer 2019 (pp. 321–332).
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. https://doi.org/10.3758/BF03196322
  • Wirth, W., Hartmann, T., Böcking, S., Vorderer, P., Klimmt, C., Schramm, H., Saari, T., Laarni, J., Ravaja, N., Gouveia, F. R., Biocca, F., Sacau, A., Jäncke, L., Baumgartner, T., & Jäncke, P. (2007). A process model of the formation of spatial presence experiences. Media Psychology, 9(3), 493–525. https://doi.org/10.1080/15213260701283079
  • Yang, Y., Dwyer, T., Marriott, K., Jenny, B., & Goodwin, S. (2020). Tilt map: Interactive transitions between choropleth map, prism map and bar chart in immersive environments. IEEE Transactions on Visualization and Computer Graphics.
  • Yeonhee Cho. (2018). How spatial presence in VR affects memory retention and motivation on second language learning: A comparison of desktop and immersive vr-based learning [ Doctoral dissertation, Syracuse University]. https://surface.syr.edu/thesis/204
  • Yuan, L., Kong, F., Luo, Y., Zeng, S., Lan, J., & You, X. (2019). Gender differences in large-scale and small-scale spatial ability: A systematic review based on behavioral and neuroimaging research. Frontiers in Behavioral Neuroscience, 13, 128. https://doi.org/10.3389/fnbeh.2019.00128
  • Zhang, M.-J., Zhang, K., Li, J., & Li, Y.-N. (2018). Visual exploration of 3D geospatial networks in a virtual reality environment. The Computer Journal, 61(3), 447–458. https://doi.org/10.1093/comjnl/bxx117
  • Zhao, J., Sensibaugh, T., Bodenheimer, B., McNamara, T. P., Nazareth, A., New- Combe, N., Minear, M., & Klippel, A. (2020). Desktop versus immersive virtual environments: Effects on spatial learning. Spatial Cognition & Computation, 20(4), 328–363. https://doi.org/10.1080/13875868.2020.1817925
  • Zhao, J., Simpson, M., Sajjadi, P., Wallgrün, J. O., Li, P., Bagher, M. M., Klippel, A. , Klippel, A. (2021). Crowdxr-pitfalls and potentials of experiments with remote participants. In 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, (pp. 450–459).
  • Zhao, J., Wallgrün, J. O., LaFemina, P. C., Normandeau, J., & Klippel, A. (2019). Harnessing the power of immersive virtual reality-visualization and analysis of 3D earth science data sets. Geo-Spatial Information Science, 22(4), 237–250. https://doi.org/10.1080/10095020.2019.1621544
  • Zielasko, D., & Riecke, B. E. (2021). To sit or not to sit in vr: Analyzing influences and (dis) advantages of posture and embodied interaction. Computers, 10(6), 73. https://doi.org/10.3390/computers10060073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.