181
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A fast grid generation algorithm for local irregular parts of hexagonal discrete global grid systems

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 178-196 | Received 18 May 2022, Accepted 18 Jan 2023, Published online: 21 Mar 2023

References

  • Ben, J., Li, Y., Zhou, C., Wang, R., & Du, L. (2017). Algebraic encoding scheme for aperture 3 hexagonal discrete global grid system. Science China Earth Sciences, 61(2), 215–227. https://doi.org/10.1007/s11430-017-9111-y
  • Ben, J., Tong, X., Zhou, C., & Zhang, K. (2015). Construction algorithm of octahedron based hexagon grid systems. Journal of Geo-Information Science, 7, 789–797. https://doi.org/10.3724/SP.J.1047.2015.00789
  • Bousquin, J. (2021). Discrete global grid systems as scalable geospatial frameworks for characterizing coastal environments. Environmental Modelling & Software, 146, 105210. https://doi.org/10.1016/j.envsoft.2021.105210
  • Cheng, Y., Yu, L., Zhao, Y., Xu, Y., Hackman, K., Cracknell, A. P., & Gong, P. (2017). Towards a global oil palm sample database: Design and implications. International Journal of Remote Sensing, 38(14), 4022–4032. https://doi.org/10.1080/01431161.2017.1312622
  • Dunlavey, M.R. (1983). Efficient polygon-filling algorithms for raster displays. ACM Transactions on Graphics, 2(4), 264–273. https://doi.org/10.1145/245.248
  • Foley, J. D., & Van Dam, A. (1982). Fundamentals of interactive computer graphics. Addison Wesley.
  • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., Chen, J. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992
  • Guo, H., Liu, Z., Jiang, H., Wang, C., Liu, J., & Liang, D. (2016). Big earth data: A new challenge and opportunity for digital earth’s development. International Journal of Digital Earth, 10(1), 1–12. https://doi.org/10.1080/17538947.2016.1264490
  • Harrison, E., Mahdavi-Amiri, A., & Samavati, F. (2011). Optimization of inverse snyder polyhedral projection. In 2011 International Conference on Cyberworlds (pp.136–143). https://doi.org/10.1109/CW.2011.36
  • He, X., & Jia, W. (2005). Hexagonal structure for intelligent vision. In International Conference on Information and Communication Technologies (pp.52–64). ICIT. https://doi.org/10.1109/ICICT.2005.1598543.
  • Horman, K., & Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry: Theory and Application, 20(3), 131–144. https://doi.org/10.1016/S0925-7721(01)00012-8
  • Lei, Y., Ai, T., Zhang, X., & Li, J. (2020). A parallel annotation placement method for dense point of interest labels using hexagonal grid. Cartography and Geographic Information Science, 48(2), 1–10. https://doi.org/10.1080/15230406.2020.1833761
  • Li, S., Dragicevic, S., Anton, F., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein, A., & Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS Journal of Photogrammetry & Remote Sensing, 115, 119–133. https://doi.org/10.1016/j.isprsjprs.2015.10.012
  • Li, M., McGrath, H., & Stefanakis, E. (2021). Integration of heterogeneous terrain data into discrete global grid systems. Cartography and Geographic Information Science, 48(6), 546–564. https://doi.org/10.1080/15230406.2021.1966648
  • Li, M., & Stefanakis, E. (2020). Geospatial operations of discrete global grid systems — a comparison with traditional GIS. Journal of Geovisualization & Spatial Analysis, 4(2), 26. https://doi.org/10.1007/s41651-020-00066-3
  • Lu, M., Wu, W., You, L., Chen, D., Zhang, L., Yang, P., & Tang, H. (2017). A synergy cropland of China by fusing multiple existing maps and statistics. Sensors, 17(7), 1613. https://doi.org/10.3390/s17071613
  • Mahdavi-Amiri, A., Alderson, T., & Samavati, F. (2015). A survey of digital earth. Computers & Graphics, 53, 95–117. https://doi.org/10.1016/j.cag.2015.08.005
  • Mahdavi-Amiri, A., Alderson, T., & Samavati, F. (2019). Geospatial data organization methods with emphasis on aperture-3 hexagonal discrete global grid systems. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(1), 30–50. https://doi.org/10.3138/cart.54.1.2018-0010
  • Mahdavi-Amiri, A., Harrison, E., & Samavati, F. (2014). Hexagonal connectivity maps for digital earth. International Journal of Digital Earth, 8(9), 750–769. https://doi.org/10.1080/17538947.2014.927597
  • Meng, L., Tong, X., Fan, S., Cheng, C., Chen, B., Yang, W., & Hou, K. (2019). A universal generating algorithm of the polyhedral discrete grid based on unit duplication. International Journal of Geo Information, 8(3), 146. https://doi.org/10.3390/ijgi8030146
  • Mirtabatabaeipour, A., Hall, J., & Samaviati, F. (2022). Resolution adaptive vector rasterization in discrete global grid systems [Technical report]. University of Calgary. http://hdl.handle.net/1880/114434
  • Mocnik, F. B. (2018). A novel identifier scheme for the ISEA aperture 3 hexagon discrete global grid system. Cartography and Geographic Information Science, 46(3), 1–15. https://doi.org/10.1080/15230406.2018.1455157
  • Mocnik, F. B. (2019). GEOGRID. https://github.com/mocnik-science/geogrid
  • Open Geospatial Consortium. (2017). Topic 21: discrete global grid systems abstract specification. https://docs.opengeospatial.org/as/15-104r5/15-104r5.html
  • Robertson, C., Chaudhuri, C., Hojati, M., & Roberts, S. A. (2020). An integrated environmental analytics system (IDEAS) based on a DGGS. Isprs Journal of Photogrammetry and Remote Sensing, 162, 214–228. https://doi.org/10.1016/j.isprsjprs.2020.02.009
  • Sahr, K. (2008). Location coding on icosahedral aperture 3 hexagon discrete global grids. Computers, Environment and Urban Systems, 32(3), 174–187. https://doi.org/10.1016/j.compenvurbsys.2007.11.005
  • Sahr, K. (2013). On the optimal representation of vector location using fixed-width multi-precision quantizers. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W2, 1–8. https://doi.org/10.5194/isprsarchives-XL-4-W2-1-2013
  • Sahr, K. (2019a). Central place indexing: Hierarchical linear indexing systems for mixed-aperture hexagonal discrete global grid systems. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(1), 16–29. https://doi.org/10.3138/cart.54.1.2018-0022
  • Sahr, K. (2019b). DGGRID version 7.5. https://github.com/sahrk/DGGRID.
  • Sahr, K., White, D., & Kimerling, A. J. (2003). Discrete global grid system. Cartography & Geographic Information Science, 30(2), 121–134. https://doi.org/10.1559/152304003100011090
  • Schilling, A., Basanow, J., & Zipf, A. (2007). Vector based mapping of polygons on irregular terrain meshes for web 3D map services. In Proceedings of the Third International Conference on Web Information Systems and Technologies (pp.198–205). https://doi.org/10.5220/0001274201980205
  • Singh, I., & Oberoi, A. (2015). Comparison between square pixel structure and hexagonal pixel structure in digital image processing. International Journal of Computer Science Trends and Technology, 3(1), 176–181. https://doi.org/10.5120/21589-4677
  • Sirdeshmukh, N., Verbree, E., Oosterom, P. V., Psomadaki, S., & Kodde, M. (2019). Utilizing a discrete global grid system for handling point clouds with varying locations, times, and levels of detail. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(1), 4–15. https://doi.org/10.3138/cart.54.1.2018-0009
  • Snyder, J. P. (1992). An equal-area map projection for polyhedral globes. Cartographica: The International Journal for Geographic Information and Geovisualization, 29(1), 10–21. https://doi.org/10.3138/27h7-8k88-4882-1752
  • Tong, X., Ben, J., Qin, Z., & Zhang, Y. (2009). The subdivision of partial grid based on discrete global grid systems. Acta Geodaetica et Cartographica Sinica, 38(06), 506–513. https://doi.org/10.3321/j.issn:1001-1595.2009.06.007
  • Tong, X., Ben, J., Wang, Y., Zhang, Y., & Pei, T. (2013). Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid system. International Journal of Geographical Information Science, 27(5), 898–921. https://doi.org/10.1080/13658816.2012.725474
  • Uber Technologies, Inc. (2022). H3: Hexagonal hierarchical geospatial indexing system. https://github.com/uber/h3
  • Van Leeuwen, D., & Strebe, D. (2006). A “Slice-and-Dice” approach tBouo area equivalence in polyhedral map projections. Cartography and Geographic Information Science, 33(4), 269–286. https://doi.org/10.1559/152304006779500687
  • Vince, A. (2006). Indexing the aperture 3 hexagonal discrete global grid. Journal of Visual Communication and Image Representation, 17(6), 1227–1236. https://doi.org/10.1016/j.jvcir.2006.04.003
  • Wang, L., Ai, T., Shen, Y., & Li, J. (2020a). The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid. Transactions in GIS, 24(2), 483–507. https://doi.org/10.1111/tgis.12611
  • Wang, R., Ben, J., Zhou, J. B., & Zheng, M. Y. (2020b). A generic encoding and operation scheme for mixed aperture three and four hexagonal discrete global grid systems. International Journal of Geographical Information Science, 10, 1–43. https://doi.org/10.1080/13658816.2020.1763363
  • Wu, X., Tong, X., Lei, Y., Li, H., Guo, C., Zhang, Y., Lai, G., & Zhou, S. (2020). Rapid computation of set boundaries of multi-scale grids and its application in coverage analysis of remote sensing images. Computers & Geosciences, 146, 104573. https://doi.org/10.1016/j.cageo.2020.104573

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.