2,214
Views
2
CrossRef citations to date
0
Altmetric
Research Article

How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 197-213 | Received 20 Aug 2022, Accepted 19 Feb 2023, Published online: 07 Mar 2023

References

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), https://doi.org/10.18637/jss.v067.i01
  • Brügger, A., Richter, K. -F., & Fabrikant, S. I. (2019). How does navigation system behavior influence human behavior? Cognitive Research: Principles and Implications, 4(1), 5. https://doi.org/10.1186/s41235-019-0156-5
  • Brunyé, T. T., Wood, M. D., Houck, L. A., & Taylor, H. A. (2017). The path more travelled: Time pressure increases reliance on familiar route-based strategies during navigation. The Quarterly Journal of Experimental Psychology, 70(8), 1439–1452. https://doi.org/10.1080/17470218.2016.1187637
  • Chrastil, E. R., & Warren, W. H. (2012). Active and passive contributions to spatial learning. Psychonomic Bulletin & Review, 19(1), 1–23. https://doi.org/10.3758/s13423-011-0182-x
  • Christou, C. G., & Bülthoff, H. H. (1999). View dependence in scene recognition after active learning. Memory & Cognition, 27(6), 996–1007. https://doi.org/10.3758/BF03201230
  • Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. https://doi.org/10.1016/S0272-4944(87)80020-8
  • Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., Dalton, R. C., Wiener, J. M., Hölscher, C., Hornberger, M., & Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104–110. https://doi.org/10.1038/s41586-022-04486-7
  • Craig, M., Wolbers, T., Harris, M. A., Hauff, P., Della Sala, S., & Dewar, M. (2016). Comparable rest-related promotion of spatial memory consolidation in younger and older adults. Neurobiology of Aging, 48, 143–152. https://doi.org/10.1016/j.neurobiolaging.2016.08.007
  • Credé, S., Thrash, T., Hölscher, C., & Fabrikant, S. I. (2019). The acquisition of survey knowledge for local and global landmark configurations under time pressure. Spatial Cognition & Computation, 19(3), 190–219. https://doi.org/10.1080/13875868.2019.1569016
  • Credé, S., Thrash, T., Hölscher, C., & Fabrikant, S. I. (2020). The advantage of globally visible landmarks for spatial learning. Journal of Environmental Psychology, 67(October 2019), 101369. https://doi.org/10.1016/j.jenvp.2019.101369
  • Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), 6310. https://doi.org/10.1038/s41598-020-62877-0
  • De Sanctis, P., Solis-escalante, T., Seeber, M., Wagner, J., Ferris, D. P., & Gramann, K. (2021). Time to move: Brain dynamics underlying natural action and cognition. The European Journal of Neuroscience, 54(12), 8075–8080. https://doi.org/10.1111/ejn.15562
  • Döllner, J. (2007). Non-photorealistic 3D geovisualization. In Multimedia cartography (pp. 229–240). https://doi.org/10.1007/978-3-540-36651-5_16
  • Elias, B., & Paelke, V. (2008). User-centered design of landmark visualizations. In L. Meng, A. Zipf, & S. Winter (Eds.), Map-based mobile services (issue lecture notes in geoinformation and cartography (pp. 33–56). https://doi.org/10.1007/978-3-540-37110-6_3
  • Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192. https://doi.org/10.1002/hipo.10173
  • Fabrikant, S. I. (2022). Neuro-adaptive LBS: Towards human- and context-adaptive mobile geographic information displays (mGIDs) to support spatial learning for pedestrian navigation. In J. Krisp, L. Meng, H. Kumke, & and H. Huang (Eds.), Proceedings, 17th International Conference on Location Based Services (LBS 2022), Munich/Augsburg, Germany. (pp. 48–58).
  • Farr, A. C., Kleinschmidt, T., Yarlagadda, P., & Mengersen, K. (2012). Wayfinding: A simple concept, a complex process. Transport Reviews, 32(6), 715–743. https://doi.org/10.1080/01441647.2012.712555
  • Franke, C., & Schweikart, J. (2017). Mental representation of landmarks on maps: Investigating cartographic visualization methods with eye tracking technology. Spatial Cognition and Computation, 17(1–2), 20–38. https://doi.org/10.1080/13875868.2016.1219912
  • Gardony, A. L., Brunyé, T. T., & Taylor, H. A. (2015). Navigational aids and spatial memory impairment: The role of divided attention. Spatial Cognition & Computation, 15(4), 246–284. https://doi.org/10.1080/13875868.2015.1059432
  • Gardony, A. L., & Taylor, H. A. (2011). Affective states influence spatial cue utilization during navigation. Presence Teleoperators and Virtual Environments, 20(3), 223–240. https://doi.org/10.1162/PRES_a_00046
  • Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
  • Gramann, K., Hoepner, P., & Karrer-Gauss, K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, 193. https://doi.org/10.3389/fpsyg.2017.00193
  • Griffin, A. L., & Fabrikant, S. I. (2012). More maps, more users, more devices means more cartographic challenges. The Cartographic Journal, 49(4), 298–301. https://doi.org/10.1179/0008704112Z.00000000049
  • Griffin, A. L., White, T., Fish, C., Tomio, B., Huang, H., Sluter, C. R., Bravo, J. V. M., Fabrikant, S. I., Bleisch, S., Yamada, M., & Picanço, P. (2017). Designing across map use contexts: A research agenda. International Journal of Cartography, 3(sup1), 90–114. https://doi.org/10.1080/23729333.2017.1315988
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005
  • Hegarty, M., Smallman, H. S., Stull, A. T., & Canham, M. S. (2009). Naïve cartography: How intuitions about display configuration can hurt performance. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 171–186. https://doi.org/10.3138/carto.44.3.171
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
  • Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15–24. https://doi.org/10.1016/j.ijhcs.2018.04.006
  • Hilton, C., Johnson, A., Slattery, T. J., Miellet, S., & Wiener, J. M. (2021). The impact of cognitive aging on route learning rate and the acquisition of landmark knowledge. Cognition, 207, 104524. https://doi.org/10.1016/j.cognition.2020.104524
  • Hilton, C., Miellet, S., Slattery, T. J., & Wiener, J. (2020). Are age-related deficits in route learning related to control of visual attention? Psychological Research, 84(6), 1473–1484. https://doi.org/10.1007/s00426-019-01159-5
  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.
  • Huffman, D. J., & Ekstrom, A. D. (2019). Which way is the bookstore? A closer look at the judgments of relative directions task. Spatial Cognition and Computation, 19(2), 93–129. https://doi.org/10.1080/13875868.2018.1531869
  • Ishikawa, T. (2019). Satellite navigation and geospatial awareness: Long-term effects of using navigation tools on wayfinding and spatial orientation. The Professional Geographer, 71(2), 197–209. https://doi.org/10.1080/00330124.2018.1479970
  • Ishikawa, T. (2022). Individual differences and skill training in cognitive mapping: How and why people differ. Topics in Cognitive Science, 00(1), 1–24. https://doi.org/10.1111/tops.12605
  • Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003
  • Kapaj, A., Lanini-Maggi, S., & Fabrikant, S. I. (2021a). The impact of landmark visualization style on expert wayfinders’ cognitive load during navigation. Abstracts of the ICA, 3, 1–3. https://doi.org/10.5194/ica-abs-3-138-2021
  • Kapaj, A., Lanini-Maggi, S., & Fabrikant, S. I. (2021b). The influence of landmark visualization style on expert wayfinders’ visual attention during a real-world navigation task. UC Santa Barbara: Center for Spatial Studies, 3, 1–6. https://doi.org/10.25436/E2NP44
  • Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., & Duh, Q. -Y. (2004). Spatial ability, experience, and skill in laparoscopic surgery. American Journal of Surgery, 188(1), 71–75. https://doi.org/10.1016/j.amjsurg.2003.12.059
  • Keil, J., Edler, D., Dickmann, F., & Kuchinke, L. (2022). Uncertainties in spatial orientation: Critical limits for landmark inaccuracies in maps in the context of map matching. KN - Journal of Cartography and Geographic Information, 72(3), 243–254. https://doi.org/10.1007/s42489-022-00105-7
  • Keil, J., Edler, D., Kuchinke, L., & Dickmann, F. (2020). Effects of visual map complexity on the attentional processing of landmarks. Plos One, 15(3), e0229575. https://doi.org/10.1371/journal.pone.0229575
  • Keil, J., Edler, D., Reichert, K., Dickmann, F., & Kuchinke, L. (2020). Structural salience of landmark pictograms in maps as a predictor for object location memory performance. Journal of Environmental Psychology, 72, 101497. https://doi.org/10.1016/j.jenvp.2020.101497
  • Kiefer, P., Giannopoulos, I., & Raubal, M. (2014). Where am i? Investigating map matching during self-localization with mobile eye tracking in an urban environment. Transactions in GIS, 18(5), 660–686. https://doi.org/10.1111/tgis.12067
  • Koletsis, E., van Elzakker, C. P. J. M., Kraak, M. -J., Cartwright, W., Arrowsmith, C., & Field, K. (2017). An investigation into challenges experienced when route planning, navigating and wayfinding. International Journal of Cartography, 3(1), 4–18. https://doi.org/10.1080/23729333.2017.1300996
  • Kray, C., Elting, C., Laakso, K., & Coors, V. (2003). Presenting route instructions on mobile devices. In Proceedings of the 8th International Conference on Intelligent User Interfaces (pp. 117–124). https://doi.org/10.1145/604045.604066
  • Krejtz, K., Duchowski, A., Szmidt, T., Krejtz, I., Perilli, F. G., Pires, A., Vilaro, A., & Villalobos, N. (2015). Gaze transition entropy. ACM Transactions on Applied Perception, 13(1), 1–20. https://doi.org/10.1145/2834121
  • Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and stan (2nd ed.). Academic Press.
  • Lanini-Maggi, S., Ruginski, I. T., Shipley, T. F., Hurter, C., Duchowski, A. T., Briesemeister, B. B., Lee, J., & Fabrikant, S. I. (2021). Assessing how visual search entropy and engagement predict performance in a multiple-objects tracking air traffic control task. Computers in Human Behavior Reports, 4, 100127. https://doi.org/10.1016/j.chbr.2021.100127
  • Liao, H., Dong, W., Peng, C., & Liu, H. (2017). Exploring differences of visual attention in pedestrian navigation when using 2D maps and 3D geo-browsers. Cartography and Geographic Information Science, 44(6), 474–490. https://doi.org/10.1080/15230406.2016.1174886
  • Lokka, I. E., & Çöltekin, A. (2019). Toward optimizing the design of virtual environments for route learning: Empirically assessing the effects of changing levels of realism on memory. International Journal of Digital Earth, 12(2), 137–155. https://doi.org/10.1080/17538947.2017.1349842
  • Lokka, I. E., Çöltekin, A., Wiener, J., Fabrikant, S. I., & Röcke, C. (2018). Virtual environments as memory training devices in navigational tasks for older adults. Scientific Reports, 8(1), 10809. https://doi.org/10.1038/s41598-018-29029-x
  • Lüdecke, D. (2020). sjPlot: Data visualization for statistics in social science (R package version 2.8.6).
  • Maggi, S., Fabrikant, S. I., Imbert, J. -P., & Hurter, C. (2016). How do display design and user characteristics matter in animations? An empirical study with air traffic control displays. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(1), 25–37. https://doi.org/10.3138/cart.51.1.3176
  • Meneghetti, C., Miola, L., Feraco, T., Muffato, V., & Miola, T. F. (2022). Individual differences in navigation: An introductory overview. In P. Raj (Ed.), Prime archives in psychology (2nd ed., pp. 1–52). Vide Leaf. https://videleaf.com/individual-differences-in-navigation-an-introductory-overview/
  • Münzer, S., Fehringer, B. C. O. F., & Kühl, T. (2016). Validation of a 3-factor structure of spatial strategies and relations to possession and usage of navigational aids. Journal of Environmental Psychology, 47, 66–78. https://doi.org/10.1016/j.jenvp.2016.04.017
  • Münzer, S., & Hölscher, C. (2011). Entwicklung und Validierung eines Fragebogens zu räumlichen Strategien. Diagnostica, 57(3), 111–125. https://doi.org/10.1026/0012-1924/a000040
  • Münzer, S., Zimmer, H. D., & Baus, J. (2012). Navigation assistance: A trade-off between wayfinding support and configural learning support. Journal of Experimental Psychology Applied, 18(1), 18–37. https://doi.org/10.1037/a0026553
  • Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300–308. https://doi.org/10.1016/j.jenvp.2006.08.001
  • Newcombe, N. S. (2018). Individual variation in human navigation. Current Biology, 28(17), R1004–1008. https://doi.org/10.1016/j.cub.2018.04.053
  • Newcombe, N. S., Hegarty, M., & Uttal, D. (2022). Building a cognitive science of human variation: Individual differences in spatial navigation. Topics in Cognitive Science, 0(1), 1–9. https://doi.org/10.1111/tops.12626
  • Ooms, K., De Maeyer, P., & Fack, V. (2014). Study of the attentive behavior of novice and expert map users using eye tracking. Cartography and Geographic Information Science, 41(1), 37–54. https://doi.org/10.1080/15230406.2013.860255
  • Oulasvirta, A., Estlander, S., & Nurminen, A. (2009). Embodied interaction with a 3D versus 2D mobile map. Personal and Ubiquitous Computing, 13(4), 303–320. https://doi.org/10.1007/s00779-008-0209-0
  • Plesa, M. A., & Cartwright, W. (2008). Evaluating the effectiveness of non-realistic 3D maps for navigation with mobile devices. In L. Meng, A. Zipf, & S. Winter (Eds.), Map-based mobile services (pp. 80–104). Springer. https://doi.org/10.1007/978-3-540-37110-6_5
  • Raubal, M., & Winter, S. (2002). Enriching wayfinding instructions with local landmarks. In International conference on geographic information science (pp. 243–259). https://doi.org/10.1007/3-540-45799-2_17
  • Richter, K. -F., & Winter, S. (2014). Landmarks. Springer.
  • Ricker, B., & Roth, R. (2018). Mobile maps and responsive design. Geographic Information Science & Technology Body of Knowledge, 2018, CV–40. https://doi.org/10.22224/gistbok/2018.2.5
  • Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17. https://doi.org/10.1167/7.2.17
  • Röser, F. (2017). A cognitive observer-based landmark-preference model. KI - Künstliche Intelligenz, 31(2), 169–171. https://doi.org/10.1007/s13218-016-0475-3
  • Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12–20. https://doi.org/10.1016/j.jenvp.2019.05.001
  • SMI. (2015). Begaze manual version 3.5.
  • Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence Teleoperators and Virtual Environments, 9(1), 69–83. https://doi.org/10.1162/105474600566628
  • Tatler, B. W., Gilchrist, I. D., & Land, M. F. (2005). Visual memory for objects in natural scenes: From fixations to object files. The Quarterly Journal of Experimental Psychology Section A, 58(5), 931–960. https://doi.org/10.1080/02724980443000430
  • Thrash, T., Fabrikant, S. I., Brügger, A., Do, C. T., Huang, H., Richter, K. F., Lanini-Maggi, S., Bertel, S., Credé, S., Gartner, G., & Münzer, S. (2019). The future of geographic information displays from giscience, cartographic, and cognitive science perspectives. In S. Timpf, C. Schlieder, M. Kattenbeck, B. Ludwig, & K. Stewart (Eds.), 14th International Conference on Spatial Information Theory (Vol. 142, pp. 19:119:119:11). https://doi.org/10.4230/LIPIcs.COSIT.2019.19
  • Wenczel, F., Hepperle, L., & von Stülpnagel, R. (2017). Gaze behavior during incidental and intentional navigation in an outdoor environment. Spatial Cognition & Computation, 17(1–2), 121–142. https://doi.org/10.1080/13875868.2016.1226838
  • Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews Computational Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147
  • Wilkening, J., & Fabrikant, S. I. (2013). How users interact with a 3D geo-browser under time pressure. Cartography and Geographic Information Science, 40(1), 40–52. https://doi.org/10.1080/15230406.2013.762140
  • Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100–110. https://doi.org/10.1016/j.compenvurbsys.2009.01.004
  • Winter, S., Raubal, M., & Nothegger, C. (2005). Focalizing measures of salience for wayfinding. In Map-based mobile services (pp. 125–139). https://doi.org/10.1007/3-540-26982-7_9
  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058. https://doi.org/10.1038/s41562-017-0058
  • Woollett, K., & Maguire, E. A. (2010). The effect of navigational expertise on wayfinding in new environments. Journal of Environmental Psychology, 30(4), 565–573. https://doi.org/10.1016/j.jenvp.2010.03.003
  • Woollett, K., Spiers, H. J., & Maguire, E. A. (2009). Talent in the taxi: A model system for exploring expertise. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1407–1416. https://doi.org/10.1098/rstb.2008.0288
  • Yesiltepe, D., Conroy Dalton, R., & Ozbil Torun, A. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing, 22(3), 369–410. https://doi.org/10.1007/s10339-021-01012-x