1,759
Views
15
CrossRef citations to date
0
Altmetric
Environmental Change and Impacts in the Kangerlussuaq Area, West Greenland

Rapid development of anoxic niches in supraglacial ecosystems

, , , , , & show all
Article: S100015 | Received 28 Feb 2017, Accepted 18 Aug 2017, Published online: 28 Mar 2018

References

  • Anesio, A. M., A. J. Hodson, A. Fritz, R. Psenner, and B. Sattler. 2009b. High microbial activity on glaciers: Importance to the global carbon cycle. Global Change Biology 15 (4):1–14.
  • Anesio, A. M., and J. Laybourn-Parry. 2012b. Glaciers and ice sheets as a biome. Trends in Ecology & Evolution 27 (4):219–25.
  • Anesio, A. M., B. Sattler, C. Foreman, J. Telling, A. Hodson, M. Tranter, and R. Psenner. 2010b. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology 51 (56):32–40.
  • Bagshaw, E. A., M. Tranter, A. G. Fountain, K. A. Welch, H. Basagic, and W. B. Lyons. 2007. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research: Biogeosciences (2005–2012) 112:G4.
  • Bagshaw, E. A., M. Tranter, J. L. Wadham, A. G. Fountain, A. Dubnick, and S. Fitzsimons. 2016a. Processes controlling carbon cycling in Antarctic glacier surface ecosystems. Geochemical Perspectives Letters 2: 44–54.
  • Bagshaw, E. A., M. Tranter, J. L. Wadham, A. G. Fountain, and M. Mowlem. 2011b. High-resolution monitoring reveals dissolved oxygen dynamics in an Antarctic cryoconite hole. Hydrological Processes 25 (18):2868–77.
  • Bagshaw, E. A., J. L. Wadham, M. Tranter, R. Perkins, A. Morgan, C. J. Williamson, A. G. Fountain, S. Fitzsimons, and A. Dubnick. 2016b. Response of Antarctic cryoconite microbial communities to light. FEMS Microbiology Ecology 92 (6):fiw076.
  • Benning, L. G., A. M. Anesio, S. Lutz, and M. Tranter. 2014b. Biological impact on Greenland’s albedo. Nature Geoscience 7 (10):691.
  • Boetius, A., A. M. Anesio, J. W. Deming, J. A. Mikucki, and J. Z. Rapp. 2015b. Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nature Reviews Microbiology 13 (11):677–90.
  • Bøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren. 2010b. The ablation zone in northeast Greenland: Ice types, albedos and impurities. Journal of Glaciology 56 (195):101–13.
  • Cameron, K. A., A. J. Hodson, and A. M. Osborn. 2012b. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology 82 (2):254–67.
  • Cameron, K. A., M. Stibal, N. Chrismas, J. Box, and C. S. Jacobsen. 2016b. Nitrate addition has minimal short‐term impacts on Greenland ice sheet supraglacial prokaryotes. Environmental Microbiology Reports 9 (2):144–50.
  • Chen, J., C. Wilson, and B. Tapley. 2006b. Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313 (5795):1958–60.
  • Christner, B. C., B. H. Kvitko, and J. N. Reeve. 2003b. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7 (3):177–83.
  • Cook, J., A. Edwards, and A. Hubbard. 2015a. Biocryomorphology: Integrating microbial processes with ice surface hydrology, topography, and roughness. Frontiers in Earth Science 3:78.
  • Cook, J., A. Edwards, N. Takeuchi, and T. Irvine-Fynn. 2015b. Cryoconite the dark biological secret of the cryosphere. Progress in Physical Geography 40 (1):66–111.
  • Cook, J., A. Hodson, A. Anesio, E. Hanna, M. Yallop, M. Stibal, J. Telling, and P. Huybrechts. 2012b. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology 58 (212):1098–108.
  • Cook, J., A. Hodson, J. Telling, A. Anesio, T. Irvine-Fynn, and C. Bellas. 2010b. The mass–area relationship within cryoconite holes and its implications for primary production. Annals of Glaciology 51 (56):106–10.
  • Edwards, A., L. A. J. Mur, S. E. Girdwood, A. M. Anesio, M. Stibal, S. M. E. Rassner, K. Hell, J. A. Pachebat, B. Post, J. S. Bussell, et al. 2014b. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiology Ecology 89 (2):222–37.
  • Edwards, A., J. A. Pachebat, M. Swain, M. Hegarty, A. J. Hodson, T. D. Irvine-Fynn, S. M. Rassner, and B. Sattler. 2013b. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters 8 (3):035003.
  • Fountain, A. G., T. H. Nylen, M. Tranter, and E. Bagshaw. 2008b. Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Biogeosciences 113 (G1):G01S92.
  • Fountain, A. G., M. Tranter, T. H. Nylen, K. J. Lewis, and D. R. Mueller. 2004b. Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology 50 (168):35–45.
  • Hanna, E., P. Huybrechts, K. Steffen, J. Cappelen, R. Huff, C. Shuman, T. Irvine-Fynn, S. Wise, and M. Griffiths. 2008b. Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. Journal of Climate 21 (2):331–41.
  • Hodson, A., B. Brock, D. Pearce, J. Laybourn-Parry, and M. Tranter. 2015b. Cryospheric ecosystems: A synthesis of snowpack and glacial research. Environmental Research Letters 10 (11):110201.
  • Hodson, A., K. Cameron, C. Bøggild, T. Irvine-Fynn, H. Langford, D. Pearce, and S. Banwart. 2010b. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology 56 (196):349–62.
  • Hodson, A., P. Mumford, J. Kohler, and P. M. Wynn. 2005b. The High Arctic glacial ecosystem: New insights from nutrient budgets. Biogeochemistry 72 (2):233–56.
  • Hu, X., and W. J. Cai. 2011b. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Global Biogeochemical Cycles 25 (3):GB3003.
  • Irvine-Fynn, T. D., J. W. Bridge, and A. J. Hodson. 2011b. In situ quantification of supraglacial cryoconite morphodynamics using time-lapse imaging: An example from Svalbard. Journal of Glaciology 57 (204):651–57.
  • Langford, H., A. Hodson, S. Banwart, and C. Bøggild. 2010b. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology 51 (56):87–94.
  • Maier, R. M., and I. L. Pepper. 2015b. Bacterial growth. In Environmental microbiology, ed. I. L. Pepper, C. P. Gerba and T. J. Gentry, 37–56. 3rd ed. San Diego: Academic Press.
  • Margesin, R., P. Schumann, D.-C. Zhang, M. Redzic, Y.-G. Zhou, H.-C. Liu, and F. Schinner. 2012a. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. International Journal of Systematic and Evolutionary Microbiology 62 (2):397–402.
  • Margesin, R., C. Spröer, P. Schumann, and F. Schinner. 2003b. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. International Journal of Systematic and Evolutionary Microbiology 53 (5):1291–96.
  • Margesin, R., C. Spröer, D.-C. Zhang, and H.-J. Busse. 2012b. Polaromonasglacialis sp. nov. and Polaromonas cryoconiti sp. nov., isolated from alpine glacier cryoconite. International Journal of Systematic and Evolutionary Microbiology 62 (11):2662–68.
  • Margesin, R., G. Zacke, and F. Schinner. 2002b. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arctic, Antarctic, and Alpine Research 34 (1):88–93.
  • Musilova, M., M. Tranter, S. A. Bennett, J. Wadham, and A. M. Anesio. 2015b. Stable microbial community composition on the Greenland Ice Sheet. Frontiers in Microbiology 6 (MAR):193.
  • Peters, V., and R. Conrad. 1995b. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Applied and Environmental Microbiology 61 (4):1673–76.
  • Ploug, H., M. Kühl, B. Buchholz-Cleven, and B. B. Jørgensen. 1997b. Anoxic aggregates: An ephemeral phenomenon in the pelagic environment? Aquatic Microbial Ecology 13 (3):285–94.
  • Porazinska, D. L., A. G. Fountain, T. H. Nylen, M. Tranter, R. A. Virginia, and D. H. Wall. 2004b. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic, and Alpine Research 36 (1):84–91.
  • Rignot, E., I. Velicogna, M. van den Broeke, A. Monaghan, and J. Lenaerts. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38 (5):L05503.
  • Sass, A. M., A. Eschemann, M. Kühl, R. Thar, H. Sass, and H. Cypionka. 2002b. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen: Sulfide gradients. FEMS Microbiology Ecology 40 (1):47–54.
  • Sass, H., H. Cypionka, and H.-D. Babenzien. 1997b. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology 22 (3):245–55.
  • Schramm, A., C. M. Santegoeds, H. K. Nielsen, H. Ploug, M. Wagner, M. Pribyl, J. Wanner, R. Amann, and D. De Beer. 1999b. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Applied and Environmental Microbiology 65 (9):4189–96.
  • Segawa, T., S. Ishii, N. Ohte, A. Akiyoshi, A. Yamada, F. Maruyama, Z. Li, Y. Hongoh, and N. Takeuchi. 2014b. The nitrogen cycle in cryoconites: Naturally occurring nitrification‐denitrification granules on a glacier. Environmental Microbiology 16 (10):3250–62.
  • Smeets, C. J. P. P, P. Kuipers Munneke, D. van As, M. R. van den Broeke, W Boot, J. Oerlemans, H. Snellen, C. H. Reijmer, and R. S. W. van de Wal. 2018. The K-transect in west Greenland: Automatic weather station data (1993–2016). Arctic, Antarctic, and Alpine Research. doi: https://doi.org/10.1080/15230430.2017.1420954.
  • Stibal, M., A. Anesio, C. Blues, and M. Tranter. 2009b. Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6 (5):913–22.
  • Stibal, M., M. Šabacká, and J. Žárský. 2012b. Biological processes on glacier and ice sheet surfaces. Nature Geoscience 5 (11):771–74.
  • Stibal, M., and M. Tranter. 2007b. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research: Biogeosciences 112:G04S33.
  • Takeuchi, N., S. Kohshima, and K. Seko. 2001b. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33 (2):115–22.
  • Taylor, B. L., I. B. Zhulin, and M. S. Johnson. 1999b. Aerotaxis and other energy-sensing behavior in bacteria. Annual Reviews in Microbiology 53 (1):103–28.
  • Tedesco, M., S. Doherty, S. Warren, M. Tranter, J. Stroeve, X. Fettweis, and P. Alexander. 2015b. What darkens the Greenland Ice Sheet?. EOS: Transactions, American Geophysical Union (96).
  • Tedesco, M., X. Fettweis, M. van den Broeke, R. van de Wal, C. Smeets, W. J. van de Berg, M. Serreze, and J. Box. 2011b. The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters 6 (1):014005.
  • Telling, J., A. M. Anesio, M. Tranter, M. Stibal, J. Hawkings, T. Irvine‐Fynn, A. Hodson, C. Butler, M. Yallop, and J. Wadham. 2012b. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. Journal of Geophysical Research: Biogeosciences (2005–2012) 117:G01017
  • Tranter, M., A. G. Fountain, C. H. Fritsen, W. Berry Lyons, J. C. Priscu, P. J. Statham, and K. A. Welch. 2004b. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18 (2):379–87.
  • Tranter, M., M. Sharp, H. Lamb, G. Brown, B. Hubbard, and I. Willis. 2002b. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland: A new model. Hydrological Processes 16 (5):959–93.
  • Uetake, J., T. Naganuma, M. B. Hebsgaard, H. Kanda, and S. Kohshima. 2010b. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science 4 (1):71–80.
  • Uetake, J., S. Tanaka, T. Segawa, N. Takeuchi, N. Nagatsuka, H. Motoyama, and T. Aoki. 2016b. Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. FEMS Microbiology Ecology 92 (9):fiw127.
  • Werner, U., P. Bird, C. Wild, T. Ferdelman, L. Polerecky, G. Eickert, R. Jonstone, O. Hoegh-Guldberg, and D. De Beer. 2006b. Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments. Marine Ecology Progress Series 309:93–105.
  • Yallop, M. L., A. M. Anesio, R. G. Perkins, J. Cook, J. Telling, D. Fagan, J. MacFarlane, M. Stibal, G. Barker, and C. Bellas. 2012b. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. The ISME Journal 6 (12):2302–13.
  • Zdanowski, M. K., A. Bogdanowicz, J. Gawor, R. Gromadka, D. Wolicka, and J. Grzesiak. 2016b. Enrichment of cryoconite hole anaerobes: Implications for the subglacial microbiome. Microbial Ecology 2016:1–7.