1,618
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Chemical and microbiological changes in Norway spruce deadwood during the early stage of decomposition as a function of exposure in an alpine setting

, , , , , , , & show all
Article: e1438347 | Received 11 Aug 2017, Accepted 01 Feb 2018, Published online: 22 May 2018

References

  • A’Bear, A. D., T. H. Jones, E. Kandeler, and L. Boddy. 2014. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry 70:1–13.
  • Allison, S. D., M. D. Wallenstein, and M. A. Bradford. 2010. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience 3:336–40.
  • Ascher, J., M. T. Ceccherini, O. L. Pantani, A. Agnelli, F. Borgogni, G. Guerri, P. Nannipieri, and G. Pietramellara. 2009. Sequential extraction and genetic fingerprinting of a forest soil metagenome. Apply Soil Ecology 42:176–81.
  • Ascher, J., G. Sartori, U. Graefe, B. Thornton, M. T. Ceccherini, G. Pietramellara, and M. Egli. 2012. Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biology and Fertility of Soils 48:709–25.
  • Baldrian, P., P. Zrustova, V. Tláskal, A. Davidova, V. Merhautová, and T. Vrška. 2016. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecology 23:109–22.
  • Bardelli, T., M. Gómez-Brandón, J. Ascher-Jenull, F. Fornasier, P. Arfaioli, D. Francioli, M. Egli, G. Sartori, H. Insam, and G. Pietramellara. 2017. Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal climosequence in the Italian Alps. Science of the Total Environment 575:1041–55.
  • Beniston, M., H. F. Diaz, and R. S. Bradley. 1997. Climatic change at high elevation sites: An overview. Climatic Change 36:233–51.
  • Djukic, I., F. Zehetner, A. Mentler, and M. H. Gerzabek. 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry 42:155–61.
  • Dullinger, S., T. Dirnböck, and G. Grabherr. 2003. Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arctic, Antarctic and Alpine Research 35:434–41.
  • Egli, M., S. Hafner, C. Derungs, J. Ascher-Jenull, F. Camin, G. Sartori, G. Raab, M. Paolini, L. Bontempo, L. Ziller, et al. 2016. Decomposition and stabilisation of Norway spruce needle-derived material in Alpine soils using a 13C-labelling approach in the field. Biogeochemistry 13:321–38.
  • Egli, M., A. Mirabella, G. Sartori, R. Zanelli, and S. Bischof. 2006. Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. Catena 67:155–74.
  • Egli, M., G. Sartori, A. Mirabella, and F. Favilli. 2009. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149:124–36.
  • Floudas, D., M. Binder, R. Riley, K. Barry, R. A. Blanchette, B. Henrissat, A. T. Martínez, R. Otillar, J. W. Spatafora, J. S. Yadav, et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–19.
  • Fornasier, F., J. Ascher, M. T. Ceccherini, E. Tomat, and G. Pietramellara. 2014. A simplified rapid, low-cost and versatile DNA-based assessment of soil microbial biomass. Ecological Indicators 45:75–82.
  • Fornasier, F., and A. Margon. 2007. Bovine serum albumin and Triton X-100 greatly increase phosphomonoesterases and arylsulphatase extraction yield from soil. Soil Biology and Biochemistry 39:2682–84.
  • Fraser, T. D., D. H. Lynch, E. Bent, M. H. Entz, and K. E. Dunfield. 2015. Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biology and Biochemistry 88:137–47.
  • Fravolini, G., M. Egli, C. Derungs, P. Cherubini, J. Ascher-Jenull, M. Gómez Brandón, T. Bardelli, R. Tognetti, F. Lombardi, and M. Marchetti. 2016. Soil attributes and microclimate are important drivers of initial deadwood decay in sub-alpine Norway spruce forests. Science of the Total Environment 569-570:1064–76.
  • Gómez-Brandón, M., J. Ascher-Jenull, T. Bardelli, F. Fornasier, G. Fravolini, P. Arfaioli, M. T. Ceccherini, G. Pietramellara, K. Lamorski, C. Slawiński, et al. 2017. Physico-chemical and microbiological evidence of exposure effects on Picea abies: Coarse woody debris at different stages of decay. Forest Ecology and Management 391:376–89.
  • Gonzalez-Polo, M., A. Fernandez-Souto, and A. T. Austin. 2013. Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems 16:1025–38.
  • Hoppe, B., T. Kahl, P. Karasch, T. Wubet, J. Bauhus, F. Buscot, and D. Krüger. 2014. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS ONE 9:e88141.
  • Hoppe, B., D. Krüger, T. Kahl, T. Arnstadt, F. Buscot, F. Bauhus, and T. Wubet. 2015. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea Abies. Scientific Reports 5:9456.
  • Hoppe, B., W. Purahong, T. Wubet, T. Kahl, J. Bauhus, T. Arnstadt, M. Hofrichter, F. Buscot, and D. KrüGer. 2016. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity 77:367–79.
  • Johnston, S. R., L. Boddy, and A. J. Weightman. 2016. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiolgy Ecology 92:1–12.
  • Kandeler, E. 1993a. Bestimmung von Ammonium. In Bodenbiologische Arbeitsmethoden, ed. F. Schinner, R. Öhlinger, E. Kandeler, and R. Margesin, 366–68. Berlin and Heidelberg: Springer.
  • Kandeler, E. 1993b. Bestimmung von Nitrat. In Bodenbiologische Arbeitsmethoden, ed. F. Schinner, R. Öhlinger, E. Kandeler, and R. Margesin, 369–71. Berlin and Heidelberg: Springer.
  • Kielak, A. M., T. R. Scheublin, L. W. Mendes, J. A. van Veen, and E. E. Kuramae. 2016. Bacterial community succession in pine-wood decomposition. Frontiers in Microbiology 7:1–12. doi:https://doi.org/10.3389/fmicb.2016.00231.
  • Kuo, S. 1996. Phosphorus. In Methods of soil analysis. Part 3: Chemical methods. SSSA Book Series, ed D. L. Sparks, vol. 5, 869–919. Madison, WI: Soil Science Society of America.
  • Meyer, A., A. Focks, V. Radl, D. Keil, G. Welzl, I. Schöning, S. Boch, S. Marhan, E. Kandeler, and M. Schloter. 2013. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8:e73536.
  • Moroni, M. T., D. M. Morris, C. Shaw, J. N. Stokland, M. E. Harmon, N. J. Fenton, K. Merganičová, J. Merganič, K. Okabe, and U. Hagemann. 2015. Buried wood: A common yet poorly documented form of deadwood. Ecosystems 18:605–28.
  • Motta, R., and P. Nola. 2001. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetation Science 12:219–30.
  • Myers, R. T., D. R. Zak, D. C. White, and A. Peacock. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Science Society of American Journal 65:359–67.
  • Nannipieri, P., J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. European Journal of Soil Science 54:655–70.
  • Nannipieri, P., J. Ascher-Jenull, M. T. Ceccherini, L. Giagnoni, G. Pietramellara, and G. Renella. 2017. Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. & Renella, G., 2003: Microbial diversity and soil functions. European Journal of Soil Science, 54: 655–670. European Journal of Soil Science 68:2–5. doi:https://doi.org/10.1111/ejss.2_12398.
  • Nannipieri, P., L. Giagnoni, G. Renella, E. Puglisi, B. Ceccanti, G. Masciandaro, F. Fornasier, M. C. Moscatelli, and S. Marinari. 2012. Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils 48:743–62.
  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G.L. Simpson, P. Sólymos, M. Henry, H. Stevens, and H. Wagner. 2008. Vegan: Community ecology package – R package version 1. 15–2. Accessed December 19, 2013. http://cran.r-project.org.
  • Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93.
  • Pastorelli, R., A. E. Agnelli, I. De Meo, A. Graziani, A. Paletto, and A. Lagomarsino. 2017. Analysis of microbial diversity and greenhouse gas production of decaying pine logs. Forests 8:224. doi:https://doi.org/10.3390/f8070224.
  • Petrillo, M., P. Cherubini, G. Fravolini, M. Marchetti, J. Ascher-Jenull, M. Schärer, H. A. Synal, D. Bertoldi, F. Camin, R. Larcher, et al. 2016. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating. Biogeosciences 13:1537–52.
  • Petrillo, M., P. Cherubini, G. Sartori, S. Abiven, J. Ascher, D. Bertoldi, F. Camin, A. Barbero, R. Larcher, and M. Egli. 2015. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. iForest 9:154–64.
  • Prévost-Bouré, N. C., R. Christen, S. Dequiedt, C. Mougel, M. Lelièvre, C. Jolivet, H. R. Shahbazkia, L. Guillou, D. Arrouays, and L. Ranjard. 2011. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time PCR. PLoS One 6:e24166.
  • Purahong, W., B. Hoppe, T. Kahl, M. Schloter, E. D. Schulze, J. Bauhus, F. Buscot, and D. Krüger. 2014. Changes within a single land-use category alter microbial diversity and community structure: Molecular evidence from wood-inhabiting fungi in forest ecosystems. Journal of Environmental Management 139:109–19.
  • Rajala, T., M. Peltoniemi, T. Pennanen, and R. Mäkipää. 2012. Fungal community dynamics in relation to susbstrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiology Ecology 81:494–505.
  • Regan, K., B. Stempfhuber, M. Schloter, F. Rasche, D. Prati, L. Philippot, R. S. Boeddinghaus, E. Kandeler, and S. Marhan. 2017. Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry 109:214–26.
  • Rinne, K. T., T. Rajala, K. Peltoniemi, J. Chen, A. Smolander, and R. Mäkipää. 2017. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Functional Ecology 31:530–41.
  • Sboarina, C., and A. Cescatti, 2004: Il clima del Trentino – Distribuzione spaziale delle principali variabili climatiche [The climate of Trentino: Spatial distribution of the principal climatic variables]. Report 33. Centro di Ecologia Alpina Monte Bondone, Trento, Italy, p. 20.
  • Siles, J. A., T. Cajthaml, A. Filipová, S. Minerbi, and R. Margesin. 2017. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biology and Biochemistry 112:1–13.
  • Sun, B., X. Y. Wang, F. Wang, Y. J. Jiang, and X. X. Zhang. 2013. Assessing the relative effects of geographic location and soil type on microbial communities associated with straw decomposition. Applied and Environmental Microbiology 79:3327–35.
  • Theurillat, J. P., and A. Guisan. 2001. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change 50:77–109.
  • Töwe, S., A. Albert, K. Kleineidam, R. Brankatschk, A. Dümig, G. Welzl, J. C. Munch, J. Zeyer, and M. Schloter. 2010. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) heavy wood grown in soils from different sites of the Damma glacier forefield. Microbial Ecology 60:762–70.
  • van der Wal, A., W. de Boer, W. Smant, and J. A. van Veen. 2007. Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant and Soil 301:189–201.