1,825
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Side by side? Vascular plant, invertebrate, and microorganism distribution patterns along an alpine to nival elevation gradient

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , & ORCID Icon show all
Article: e1475951 | Received 14 Nov 2017, Accepted 04 Apr 2018, Published online: 29 Jun 2018

References

  • Alatalo, J. M., A. K. Jägerbrand, and P. Čuchta. 2015. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Scientific Reports 5(18161):1–13.
  • Barry, R. G. 2008. Mountain weather and climate. Cambridge, UK: Cambridge University Press.
  • Bates, D., M. Maechler, B. M. Bolker, and S. Walker. 2015. lme4: Linear mixed-effects models using Eigen and S4. Journal of Statistical Software 67:1–48.
  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57:289–300.
  • Bokhorst, S., C. Ronfort, A. Huiskes, P. Convey, and R. Aerts. 2007. Food choice of Antarctic soil arthropods clarified by stable isotope signatures. Polar Biology 30:983–90.
  • Brandmayr, P., R. Pizzolotto, S. Scalercio, M. C. Algieri, and T. Zetto. 2003. Diversity patterns of carabids in the Alps and the Apennines. In Alpine biodiversity in Europe - A Europe-wide assessment of biological richness and change, eds., 307–17. Berlin: Springer.
  • Bryant, J. A., C. Lamanna, H. Morlon, A. J. Kerkhoff, B. J. Enquist, and J. L. Green. 2008. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences of the United States of America 105:11505–11.
  • Chatzaki, M., P. Lymberakis, G. Markakis, and M. Mylonas. 2005. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. Journal of Biogeography 32:813–31.
  • Crutzen, P. J., and J. Lelieveld. 2001. Human impacts on atmospheric chemisty. Annual Review of Earth and Planetary Sciences 29:17–45.
  • Diaz-Aguilar, I., and S. A. Quideau. 2013. Trophic ecology of mesostigmatan and oribatid mites in harvested and control coniferous and deciduous stands of the boreal mixedwood forest determined using N-15 stable isotopes. Soil Biology & Biochemistry 67:147–54.
  • Dillon, M. E., M. R. Frazier, and R. Dudley. 2006. Into thin air: Physiology and evolution of alpine insects. Integrative and Comparative Biology 46:49–61.
  • Eisenbeis, G., and E. Meyer. 1999. Ecophysiological and morphological features of glacier-dwelling Collembola. In Cold-adapted organisms - ecology, physiology, enzymology and molecular biology, eds., 197–218. Berlin: Springer.
  • Fischer, B. M., E. Meyer, and M. Maraun. 2014. Positive correlation of trophic level and proportion of sexual taxa of oribatid mites (Acari: Oribatida) in alpine soil systems. Experimental and Applied Acarology 63:465–79.
  • Fischer, B. M., H. Schatz, P. Querner, and H. Pauli. 2016. Ceratozetes spitsbergensis Thor, 1934: An Arctic mite new to continental Europe (Acari: Oribatida). International Journal of Acarology 42:135–39.
  • Freeman, J. A. 1952. Occurence of Collembola in the air. Proceedings of the Royal Entomological Society of London 27A:1–28.
  • Gereben-Krenn, B.-A., H. W. Krenn, and M. A. Strodl. 2011. Initial colonization of new terrain in an alpine glacier foreland by carabid beetles (Carabidae, Coleoptera). Arctic, Antarctic, and Alpine Research 43:397–403.
  • Glick, P. A. 1939. The distribution of insects, spiders and mites in the air. Technical Bulletin No. 673, U.S. Department of Agriculture, Washington.
  • Gottfried, M., M. Hantel, C. Maurer, R. Toechterle, H. Pauli, and G. Grabherr. 2011. Coincidence of the alpine-nival ecotone with the summer snowline. Environmental Research Letters 6(014013):1–12.
  • Gottfried, M., H. Pauli, A. Futschik, M. Akhalkatsi, P. Barancok, J. L. Benito Alonso, G. Coldea, J. Dick, B. Erschbamer, M. R. Fernandez Calzado, et al. 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2:111–15.
  • Gottfried, M., H. Pauli, and G. Grabherr. 1998. Predicting of vegetation patterns at the limits of plant life: A new view of the alpine-nival ecotone. Arctic and Alpine Research 30:207–21.
  • Gressitt, J. L., R. E. Leech, T. S. Leech, J. Sedlacek, and K. A. J. Wise. 1961. Trapping of air-borne insects in the antarctic area (part 2). Pacific Insects 3:559–62.
  • Hågvar, S. 1976. Altitudinal zonation of the invertebrate fauna on branches of birch (Betula pubescens Ehrh.). Norwegian Journal of Entomology 23:61–74.
  • Hågvar, S., and K. Klanderud. 2009. Effect of simulated environmental change on alpine soil arthropods. Global Change Biology 15:2972–80.
  • Hahn, D. A., and D. L. Denlinger. 2011. Energetics of insect diapause. Annual Review of Entomology, M. R.Berenbaum, R. T. Carde, and G. E. Robinson eds., Vol.56, 103–21.
  • Heggen, M. P. 2010. Oribatid mites of alpine fennoscandia. Norwegian Journal of Entomology 57:38–70.
  • Hill, M. O. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 54:427–32.
  • Hodkinson, I. D. 2005. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews 80:489–513.
  • Hodkinson, I. D., S. J. Coulson, N. R. Webb, and W. Block. 1996. Can high arctic soil microarthropods survive elevated summer temperatures? Functional Ecology 10:314–21.
  • Hofmann, K., A. Lamprecht, H. Pauli, and P. Illmer. 2016a. Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology 72:704–16.
  • Hofmann, K., H. Pauli, N. Praeg, A. O. Wagner, and P. Illmer. 2016b. Methane-cycling microorganisms in soils of a high-alpine altitudinal gradient. FEMS Microbiology Ecology 92:1–10 (fiw009).
  • Hofmann, K., N. Praeg, M. Mutschlechner, A. O. Wagner, and P. Illmer. 2016c. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiology Ecology 92:1–11 (fiv171).
  • Hofmann, K., C. Reitschuler, and P. Illmer. 2013. Aerobic and anaerobic microbial activities in the foreland of a receding glacier. Soil Biology & Biochemistry 57:418–26.
  • Janetschek, H. 1956. Das Problem der inneralpinen Eiszeitüberdauerung durch Tiere (Ein Beitrag zur Geschichte der Nivalfauna). Österreichische Zoologische Zeitschrift 6:421–506.
  • Jiang, Y. F., X. Q. Yin, and F. B. Wang. 2015. Composition and spatial distribution of soil mesofauna along an elevation gradient on the north slope of the Changbai Mountains, China. Pedosphere 25:811–24.
  • Johnson, C. G. 1957. The distribution of insects in the air and the empirical relation of density to height. Journal of Animal Ecology 26:479–94.
  • Kopeszki, H. 2000. Auf der Suche nach roten Gletscherflöhen. Funde hochalpiner Springschwänze (Collembola). Vorarlberger Naturschau 8:133–44.
  • Körner, C. 2011. Coldest places on earth with angiosperm plant life. Alpine Botany 121:11–22.
  • Landolt, E., B. Bäumler, A. Erhardt, O. Hegg, F. Klötzli, W. Lämmler, M. Nobis, K. Rudmann-Maurer, F. H. Schweingruber, J.-P. Theurillat, E. Urmi, M. Vust, and T. Wohlgemuth. 2010. Flora indicativa: Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen/Ecological indicator values and biological attributes of the Flora of Switzerland and the Alps. 2nd ed. Bern: Haupt Verlag.
  • Larigauderie, A., and C. Körner. 1995. Acclimation of leaf dark respiration to temperature in alpine and lowland plant-species. Annals of Botany 76:245–52.
  • Lehmitz, R., D. Russell, K. Hohberg, A. Christian, and W. E. R. Xylander. 2011. Wind dispersal of oribatid mites as mode of migration. Pedobiologia 54:201–07.
  • Leonov, V. D., A. A. Rakhleeva, and E. A. Sidorchuk. 2015. Distribution of oribatid mites (Acari: Oribatida) along an altitudinal profile of Mount Vud’yavrchorr (the Khibiny Mountains). Eurasian Soil Science 48:1257–67.
  • Mani, M. S. 1968. Ecology and biogeography of high altitude insects. The Hague: Dr. W. Junk N. V. Publ.
  • Maraun, M., S. Visser, and S. Scheu. 1998. Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Applied Soil Ecology 9:175–81.
  • McCain, C. M., and J.-A. Grytnes. 2010. Elevational gradients in species richness, encyclopedia of life sciences. 1–10. Chichester: John Wiley & Sons.
  • Meyer, E., and K. Thaler. 1995. Animal diversity at high altitudes in the Austrian Central Alps. In Arctic and alpine biodiversity: Patterns, causes and ecosystem consequences, eds., 97–108. Berlin: Springer.
  • Minor, M. A., A. B. Babenko, S. G. Ermilov, A. A. Khaustov, and O. L. Makarova. 2016. Effects of cushion plants on high-altitude soil microarthropod communities: Cushions increase abundance and diversity of mites (Acari), but not springtails (Collembola). Arctic, Antarctic, and Alpine Research 48:485–500.
  • Mitchell, R. J., H. M. Urpeth, A. J. Britton, H. Black, and A. R. Taylor. 2016. Relative importance of local- and large-scale drivers of alpine soil microarthropod communities. Oecologia 182:913–24.
  • Nagy, L., and G. Grabherr. 2009. The biology of alpine habitats. 336. Oxford, New York: Oxford University Press.
  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2015. vegan: community ecology package. R package version 2.3-0.
  • Pauli, H., M. Gottfried, S. Dullinger, O. Abdaladze, M. Akhalkatsi, J. L. B. Alonso, G. Coldea, J. Dick, B. Erschbamer, R. F. Calzado, et al. 2012. Recent plant diversity changes on Europe’s mountain summits. Science 336:353–55.
  • Pauli, H., M. Gottfried, A. Lamprecht, S. Niessner, S. Rumpf, M. Winkler, K. Steinbauer, and G. Grabherr. 2015. The GLORIA field manual – Standard multi-summit approach, supplementary methods and extra approaches. 5th ed. Vienna: GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences Vienna.
  • Pauli, H., M. Gottfried, K. Reiter, C. Klettner, and G. Grabherr. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994-2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology 13:147–56.
  • Pizzolotto, R., A. Albertini, M. Gobbi, and P. Brandmayr. 2016. Habitat diversity analysis along an altitudinal sequence of alpine habitats: The Carabid beetle assemblages as a study model. Periodicum Biologorum 118:241–54.
  • Praeg, N., A. O. Wagner, and P. Illmer. 2017. Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils. Plant and Soil 410:193–206.
  • R Core Team. 2016. R: A language and environment for statistical computing. http://www.R-project.org/.
  • Rabitsch, W., W. Graf, P. Huemer, M. Kahlen, C. Komposch, W. Paill, A. Reischütz, P. L. Reischütz, D. Moser, and F. Essl. 2016. Biogeography and ecology of endemic invertebrate species inAustria: A cross-taxon analysis. Basic and Applied Ecology 17:95–105.
  • Reitschuler, C., P. Lins, and P. Illmer. 2014. Primer evaluation and adaption for cost-efficient SYBR green-based qPCR and its applicability for specific quantification of methanogens. World Journal of Microbiology and Biotechnology 30:293–304.
  • Schatz, H. 2008. The Schlern/Sciliar massif (Southern Alps, Italy) – A biodiversity hotspot for oribatid mites (Acari, Oribatida). In Integrative acarology. Proceedings of the 6th European Congress, European Association of Acarologists 2008 July 21–25, eds. M. Bertrand, S. Kreiter, K. D. McCoy, A. Migeon, M. Navajas, M. S. Tixier, and L. Vial, 24–31. Montpellier.
  • Schinner, F., R. Öhlinger, E. Kandeler, and R. Margesin. 1996. Methods in soil biology. 426. Heidelberg: Springer.
  • Schneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking, and M. Maraun. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (N-15/N-14). Soil Biology & Biochemistry 36:1769–74.
  • Shen, J., T. Solhøy, H. F. Wang, T. I. Vollan, and R. M. Xu. 2005. Differences in soil arthropod communities along a high altitude gradient at Shergyla Mountain, Tibet, China. Arctic, Antarctic, and Alpine Research 37:261–66.
  • Siles, J. A., T. Cajthaml, S. Minerbi, and R. Margesi. 2016. Effect of altitude and season on microbial activity, abundance and community structure in alpine forest soils. FEMS Microbiology Ecology 92:1–12 (fiw008).
  • Siles, J. A., and R. Margesin. 2016. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors? Microbial Ecology 72:207–20.
  • Steinbauer, M. J., J.-A. Grytnes, G. Jurasinski, A. Kulonen, H. Pauli, C. Rixen, M. Winkler, M. Bardy-Durchhalter, E. Barni, A. D. Bjorkman, et al. 2018. Climate warming accelerates the increase in plant species richness on European mountain summits. Nature 556:231–234.
  • Thaler, K. 2003. The diversity of high altitude Arachnids (Araneae, Opiliones, Pseudoscorpiones) in the Alps. In Alpine biodiversity in Europe - A Europe-wide assessment of biological richness and change, eds., 281–96. Berlin: Springer.
  • Thaler, K., and J. Buchar. 1996. Die Wolfspinnen von Österreich 3: Gattungen Aulonia, Pardosa (p. p.), Virata, Xerolycosa (Arachnida, Araneae: Lycosidae) - Faunistischtiergeographische Übersicht. Carinthia II 186/106:393–410.
  • Thébault, A., J.-C. Clément, S. Ibanez, J. Roy, R. A. Geremia, C. A. Pérez, A. Buttler, Y. Estienne, and S. Lavorel. 2014. Nitrogen limitation and microbial diversity at the treeline. Oikos 123:729–40.
  • Theurillat, J.-P., A. Schlüssel, P. Geissler, A. Guisan, C. Velluti, and L. Wiget. 2003. Vascular plant and bryophyte diversity along elevation gradients in the Alps. In Alpine biodiversity in Europe - A Europe-wide assessment of biological richness and change, eds., 185–93. Berlin: Springer.
  • Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S. Fourth edition. New York: Springer.
  • Wipf, S., V. Stöckli, K. Herz, and C. Rixen. 2013. The oldest monitoring site of the Alps revisited: Accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology and Diversity 6:447–55.
  • Zhang, B., L. Chang, N. Zhen, H. Wu, X. Sun, and D. Wu. 2014. A review of the snow-living collembola. Acta Ecologica Sinica 34:1922–36.