1,734
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Functional group contributions to carbon fluxes in arctic-alpine ecosystems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 58-68 | Received 17 Sep 2018, Accepted 25 Jan 2019, Published online: 22 Mar 2019

References

  • Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Rodenbeck, M. A. Arain, D. Baldocchi, G. B. Bonan, et al. 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329 (5993):834–38. doi:10.1126/science.1184984.
  • Biasi, C., H. Meyer, O. Rusalimova, R. Haemmerle, C. Kaiser, C. Baranyi, H. Daims, N. Lashchinsky, P. Barsukov, and A. Richter. 2008. Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant and Soil 307 (1–2):191–205. doi:10.1007/s11104-008-9596-2.
  • Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5 (7):360–64. doi:10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2.
  • Chapin, F. S., J. McFarland, A. D. McGuire, E. S. Euskirchen, R. W. Ruess, and K. Kielland. 2009. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences. Journal of Ecology 97 (5):840–50. doi:10.1111/jec.2009.97.issue-5.
  • Chapin, F. S., M. S. BretHarte, S. E. Hobbie, and H. L. Zhong. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science 7 (3):347–58. doi:10.2307/3236278.
  • Christensen, T. R., T. Friborg, M. Sommerkorn, J. Kaplan, L. Illeris, H. Soegaard, C. Nordstroem, and S. Jonasson. 2000. Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochemical Cycles 14 (3):701–13. doi:10.1029/1999GB001134.
  • Condit, R., S. P. Hubbell, and R. B. Foster. 1996. Assessing the response of plant functional types to climatic change in tropical forests. Journal of Vegetation Science 7 (3):405–16. doi:10.2307/3236284.
  • Cornelissen, J. H. C., P. M. van Bodegom, R. Aerts, T. V. Callaghan, R. S. P. van Logtestijn, J. Alatalo, F. S. Chapin, R. Gerdol, J. Gudmundsson, D. Gwynn-Jones, et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10 (7):619–27. doi:10.1111/j.1461-0248.2007.01051.x.
  • De Deyn, G. B., J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11 (5):516–31. doi:10.1111/j.1461-0248.2008.01164.x.
  • Diaz, S., and M. Cabido. 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 8 (4):463–74. doi:10.2307/3237198.
  • Dormann, C. F., and S. J. Woodin. 2002. Climate change in the Arctic: Using plant functional types in a meta-analysis of field experiments. Functional Ecology 16 (1):4–17. doi:10.1046/j.0269-8463.2001.00596.x.
  • Dorrepaal, E. 2007. Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? Journal of Ecology 95 (6):1167–80. doi:10.1111/jec.2007.95.issue-6.
  • Douma, J. C., M. T. van Wijk, S. I. Lang, and G. R. Shaver. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: Quantification and relationships with system properties. Plant Cell and Environment 30 (10):1205–15. doi:10.1111/j.1365-3040.2007.01697.x.
  • Eckert, D. 2015. Photosynthetic response to temperature — A comparison between prostrate and erect alpine shrubs. Trondheim, Norway: Department of Biology, Norwegian University of Science and Technology.
  • Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E. Pinzon. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters 7:1. doi:10.1088/1748-9326/7/1/015506.
  • Frolking, S. 1997. Sensitivity of spruce/moss boreal forest net ecosystem productivity to seasonal anomalies in weather. Journal of Geophysical Research: Atmospheres 102 (D24):29053–64. doi:10.1029/96JD03707.
  • Goulden, M. L., and P. M. Crill. 1997. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiology 17 (8–9):537–42.
  • Grogan, P., and F. S. Chapin. 1999. Arctic soil respiration: Effects of climate and vegetation depend on season. Ecosystems 2 (5):451–59. doi:10.1007/s100219900093.
  • Grogan, P., and F. S. Chapin. 2000. Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in arctic tundra. Oecologia 125 (4):512–20. doi:10.1007/s004420000490.
  • Hartley, I. P., M. H. Garnett, M. Sommerkorn, D. W. Hopkins, B. J. Fletcher, V. L. Sloan, G. K. Phoenix, and P. A. Wookey. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nature Climate Change 2 (12):875–79. doi:10.1038/nclimate1575.
  • Jasoni, R. L., S. D. Smith, and J. A. Arnone. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology 11 (5):749–56. doi:10.1111/gcb.2005.11.issue-5.
  • Johnson, D. A., and L. L. Tieszen. 1976. Aboveground biomass allocation, leaf growth, and photosynthesis patterns in tundra plant forms in Arctic Alaska. Oecologia 24 (2):159–73. doi:10.1007/BF00572757.
  • Johnson, L. C., G. R. Shaver, D. H. Cades, E. Rastetter, K. Nadelhoffer, A. Giblin, J. Laundre, and A. Stanley. 2000. Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81 (2):453–69.
  • Jonasson, S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52 (1):101–06. doi:10.2307/3565988.
  • Jones, M. H., J. T. Fahnestock, D. A. Walker, M. D. Walker, and J. M. Welker. 1998. Carbon dioxide fluxes in moist and dry arctic tundra during season: Responses to increases in summer temperature and winter snow accumulation. Arctic and Alpine Research 30 (4):373–80. doi:10.2307/1552009.
  • Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D. Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal, J. Q. Chen, et al. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences 116:G(3). doi:10.1029/2010JG001566.
  • Kittler, F., W. Eugster, T. Foken, M. Heimann, O. Kolle, and M. Goeckede. 2017. High-quality eddy-covariance CO2 budgets under cold climate conditions. Journal of Geophysical Research: Biogeosciences 122 (8):2064–84.
  • Lang, S. I., J. H. C. Cornelissen, T. Klahn, R. S. P. van Logtestijn, R. Broekman, W. Schweikert, and R. Aerts. 2009. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology 97 (5):886–900. doi:10.1111/j.1365-2745.2009.01538.x.
  • McManus, K. M., D. C. Morton, J. G. Masek, D. D. Wang, J. O. Sexton, J. R. Nagol, P. Ropars, and S. Boudreau. 2012. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Global Change Biology 18 (7):2313–23. doi:10.1111/j.1365-2486.2012.02708.x.
  • Mikan, C. J., J. P. Schimel, and A. P. Doyle. 2002. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry 34 (11):1785–95. doi:10.1016/S0038-0717(02)00168-2.
  • Miller, P. C., P. J. Webber, and W. C. Oechel. 1980. Biophysical processes and primary production. In An Arctic ecosystem: The coastal tundra at Barrow, Alaska, ed. J. Brown., P. C. Miller, and L. L. Tieszen, 66–101. Strudsberg, PA: Dowden, Hamilton, and Ross, Inc.
  • Muraoka, H., H. Noda, M. Uchida, T. Ohtsuka, H. Koizumi, and T. Nakatsubo. 2008. Photosynthetic characteristics and biomass distribution of the dominant vascular plant species in a high Arctic tundra ecosystem, Ny-Ålesund, Svalbard: Implications for their role in ecosystem carbon gain. Journal of Plant Research 121 (2):137–45. doi:10.1007/s10265-007-0134-8.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6:4. doi:10.1088/1748-9326/6/4/045509.
  • Natali, S. M., E. A. G. Schuur, C. Trucco, C. E. H. Pries, K. G. Crummer, and A. F. B. Lopez. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology 17 (3):1394–407. doi:10.1111/j.1365-2486.2010.02303.x.
  • Nobrega, S., and P. Grogan. 2008. Landscape and ecosystem-level controls on net carbon dioxide exchange along a natural moisture gradient in Canadian low arctic tundra. Ecosystems 11 (3):377–96. doi:10.1007/s10021-008-9128-1.
  • Oberbauer, S. F., and W. C. Oechel. 1989. Maximum Co-2-assimilation rates of vascular plants on an alaskan arctic tundra slope. Holarctic Ecology 12 (3):312–16.
  • Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. C. Zulueta, L. Hinzman, and D. Kane. 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406 (6799):978–81. doi:10.1038/35023137.
  • Parker, T. C., J.-A. Subke, and P. A. Wookey. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Global Change Biology 21 (5):2070–81. doi:10.1111/gcb.12793.
  • R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Reich, P. B., M. B. Walters, and D. S. Ellsworth, 1997: From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America 94:13730–34.
  • Shaver, G. R., L. E. Street, E. B. Rastetter, M. T. van Wijk, and M. Williams. 2007. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. Journal of Ecology 95 (4):802–17. doi:10.1111/jec.2007.95.issue-4.
  • Smolders, A. J. P., H. B. M. Tomassen, H. W. Pijnappel, L. P. M. Lamers, and J. G. M. Roelofs. 2001. Substrate‐derived CO2 is important in the development of Sphagnum spp. New Phytologist 152 (2):325–32. doi:10.1046/j.0028-646X.2001.00261.x.
  • Sørensen, M. V., B. J. Graae, D. Hagen, B. J. Enquist, K. O. Nystuen, and R. Strimbeck. 2018a. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities. BMC Ecology 18:29.
  • Sørensen, M. V., R. Strimbeck, K. O. Nystuen, R. E. Kapas, B. J. Enquist, and B. J. Graae. 2018b. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 21 (2):316–30. doi:10.1007/s10021-017-0158-4.
  • Street, L. E., G. R. Shaver, M. Williams, and M. T. van Wijk. 2007. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of Ecology 95 (1):139–50. doi:10.1111/jec.2007.95.issue-1.
  • Susiluoto, S., T. Rasilo, J. Pumpanen, and F. Berninger. 2008. Effects of grazing on the vegetation structure and carbon dioxide exchange of a Fennoscandian fell ecosystem. Arctic, Antarctic, and Alpine Research 40 (2):422–31. doi:10.1657/1523-0430(07-035)[SUSILUOTO]2.0.CO;2.
  • Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12 (4):686–702. doi:10.1111/gcb.2006.12.issue-4.
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23 (2):GB2023. doi:10.1029/2008GB003327.
  • Tjoelker, M. G, J. Oleksyn, and P. B. Reich. 2001. Modelling respiration of vegetation: Evidence for a general temperature-dependent Q(10). Global Change Biology 7:23–230.
  • Tommervik, H., B. Johansen, J. A. Riseth, S. R. Karlsen, B. Solberg, and K. A. Hogda. 2009. Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957-2006. Forest Ecology and Management 257 (1):244–57. doi:10.1016/j.foreco.2008.08.038.
  • Virkkala, A.-M., T. Virtanen, A. Lehtonen, J. Rinne, and M. Luoto. 2018. The current state of CO2 flux chamber studies in the Arctic tundra: A review. Progress in Physical Geography 42 (2):162–84. doi:10.1177/0309133317745784.
  • Virtanen, R., L. Oksanen, T. Oksanen, J. Cohen, B. C. Forbes, B. Johansen, J. Kayhko, J. Olofsson, J. Pulliainen, and H. Tommervik. 2016. Where do the treeless tundra areas of northern highlands fit in the global biome system: Toward an ecologically natural subdivision of the tundra biome. Ecology and Evolution 6 (1):143–58. doi:10.1002/ece3.1837.
  • Ward, S. E., R. D. Bardgett, N. P. McNamara, and N. J. Ostle. 2009. Plant functional group identity influences short-term peatland ecosystem carbon flux: Evidence from a plant removal experiment. Functional Ecology 23 (2):454–62. doi:10.1111/fec.2009.23.issue-2.
  • Williams, M., L. E. Street, M. T. van Wijk, and G. R. Shaver. 2006. Identifying differences in carbon exchange among arctic ecosystem types. Ecosystems 9 (2):288–304. doi:10.1007/s10021-005-0146-y.
  • Wilmking, M., J. Harden, and K. Tape. 2006. Effect of tree line advance on carbon storage in NW Alaska. Journal of Geophysical Research: Biogeosciences 111 (G2):G02023. doi:10.1029/2005JG000074.
  • Wookey, P. A., R. Aerts, R. D. Bardgett, F. Baptist, K. A. Brathen, J. H. C. Cornelissen, L. Gough, I. P. Hartley, D. W. Hopkins, S. Lavorel, et al. 2009. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology 15 (5):1153–72. doi:10.1111/j.1365-2486.2008.01801.x.
  • Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, et al. 2004. The worldwide leaf economics spectrum. Nature 428 (6985):821. doi:10.1038/nature02437.
  • Yuan, W., S. Liu, W. Dong, S. Liang, S. Zhao, J. Chen, W. Xu, X. Li, A. Barr, T. A. Black, et al. 2014. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nature Communications 5:4270.