1,878
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Drivers of C cycling in three arctic-alpine plant communities

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 128-147 | Received 15 Jun 2018, Accepted 04 Mar 2019, Published online: 29 Apr 2019

References

  • Alain, Z., F. Elena, N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1 (1):3–14. doi:10.1111/j.2041-210X.2009.00001.x.
  • Bardgett, D. R. 2017. Plant trait-based approaches for interrogating belowground function. Biology and Environment: Proceedings of the Royal Irish Academy 117B (1):1–13. doi:10.3318/bioe.2017.03.
  • Bardgett, R. D. 2011. Plant-soil interactions in a changing world. F1000 Biology Reports 3 (16). doi: 10.3410/B3-16.
  • Bardgett, R. D., W. D. Bowman, R. Kaufmann, and S. K. Schmidt. 2005. A temporal approach to linking aboveground and belowground ecology. TRENDS in Ecology and Evolution 20 (11):634–41. doi:10.1016/j.tree.2005.08.005.
  • Becklin, K. M., and C. Galen. 2009. Intra- and interspecific variation in mycorrhizal associations across a heterogeneous habitat gradient in alpine plant communities. Arctic, Antarctic, and Alpine Research 41 (2):183–90. doi:10.1657/1938-4246-41.2.183.
  • Becklin, K. M., M. L. Pallo, and C. Galen. 2012. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. Journal of Ecology 100 (2):343–51. doi:10.1111/j.1365-2745.2011.01903.x.
  • Bell, C. W., B. E. Fricks, J. D. Rocca, J. M. Steinweg, S. K. McMahon, and M. D. Wallenstein. 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments: JoVE 81:50961. doi:10.3791/50961.
  • Berdanier, A. B., and J. A. Klein. 2011. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems 14 (6):963–74. doi:10.1007/s10021-011-9459-1.
  • Björk, R. G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39 (1):34–43. doi:10.1657/1523-0430(2007)39[34:EOASAT]2.0.CO;2.
  • Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference. 2nd ed. New York: Springer.
  • Cahoon, S. M., P. F. Sullivan, G. R. Shaver, J. M. Welker, and E. Post. 2012. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecology Letters 15:1415–22. doi:10.1111/j.1461-0248.2012.01865.x.
  • Cannone, N., S. Sgorbati, and M. Guglielmin. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5 (7):360–64. doi:10.1890/1540-9295(2007)5[360:UIOCCO]2.0.CO;2.
  • Chadburn, S. E., G. Krinner, P. Porada, A. Bartsch, C. Beer, L. Belelli Marchesini, J. Boike, A. Ekici, B. Elberling, T. Friborg, et al. 2017. Carbon stocks and fluxes in the high latitudes: Using site-level data to evaluate Earth system models. Biogeosciences 14 (22):5143–69. doi:10.5194/bg-14-5143-2017.
  • Chapin III, F. S. 2003. Responses of arctic tundra to experimental and observed changes in climate. Annals of Botany 91:455–63.
  • Christiansen, C. T., M. C. Mack, J. DeMarco, and P. Grogan. 2018. Decomposition of senesced leaf litter is faster in tall compared to low birch shrub tundra. Ecosystems. doi:10.1007/s10021-018-0240-6.
  • Clemmensen, K. E., R. D. Finlay, A. Dahlberg, J. Stenlid, D. A. Wardle, and B. D. Lindahl. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytologist 205 (4):1525–36. doi:10.1111/nph.13208.
  • Cornelissen, J. H. C., P. M. van Bodegom, R. Aerts, T. V. Callaghan, R. S. P. van Logtestijn, J. Alatalo, F. S. Chapin, R. Gerdol, J. Gudmundsson, D. Gwynn-Jones, et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10:619–27. doi:10.1111/j.1461-0248.2007.01051.x.
  • Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. Ter Steege, H. D. Morgan, M. G. A. van der Heijden, et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335–80. doi:10.1071/BT02124.
  • Crowther, T. W., K. E. O. Todd-Brown, C. W. Rowe, W. R. Wieder, J. C. Carey, M. B. Machmuller, B. L. Snoek, S. Fang, G. Zhou, S. D. Allison, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540:104. doi:10.1038/nature20150.
  • Dahl, M. B., A. Priemé, A. Brejnrod, P. Brusvang, M. Lund, J. Nymand, M. Kramshøj, H. Ro-Poulsen, and M. S. Haugwitz. 2017. Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Scientific Reports 7 (1):16035. doi:10.1038/s41598-017-16007-y.
  • De Deyn, G. B., J. H. C. Cornelissen, and R. D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11:516–31. doi:10.1111/j.1461-0248.2008.01164.x.
  • Douma, J. C., M. T. Van Wijk, S. I. Lang, and G. R. Shaver. 2007. The contribution of mosses to the carbon and water exchange of arctic ecosystems: Quantification and relationships with system properties. Plant, Cell & Environment 30 (10):1205–15. doi:10.1111/j.1365-3040.2007.01697.x.
  • Enquist, B. J., J. Norberg, S. P. Bonser, C. Violle, C. T. Webb, A. Henderson, L. L. Sloat, and V. M. Savage. 2015. Scaling from traits to ecosystems: Developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Advances in Ecological Research, vol. 52, pp. 249–318.
  • Epstein, H. E., U. S. Bhatt, M. K. Raynolds, D. A. Walker, B. C. Forbes, T. Horstkotte, M. Macias-Fauria, A. Martin, G. Phoenix, J. Bjerke, et al. 2015. Tundra greenness. NOAA. Accessed April 27, 2018.
  • Eskelinen, A., S. Stark, and M. Männistö. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161 (1):113–23. doi:10.1007/s00442-009-1362-5.
  • Garnier, E., J. Cortez, G. Billès, M.-L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, et al. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85 (9):2630–37. doi:10.1890/03-0799.
  • Garnier, E., M. Navas, and K. Grigulis. 2016. Plant functional diversity organism traits, community structure, and ecosystem properties. 1st ed. Oxford: Oxford University Press.
  • German, D. P., S. S. Chacon, and S. D. Allison 2011. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92 (7):1471–80. doi:10.1890/10-2028.1.
  • Goodall, D. 1952. Some considerations in the use of point quadrats for the analysis of vegetation. Australian Journal of Biological Sciences 5:1–41. doi:10.1071/BI9520001.
  • Gould, W. A., M. Raynolds, and D. A. Walker. 2003. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic. Journal of Geophysical Research: Atmospheres 108:D2. doi:10.1029/2001JD000948.
  • Graae, B. J., P. De Frenne, A. Kolb, J. Brunet, O. Chabrerie, K. Verheyen, N. Pepin, T. Heinken, A. Zobel, A. Shevtsova, I. Nijs, and A. Milbau. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19.
  • Grime, J. P. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86 (6):902–10. doi:10.1046/j.1365-2745.1998.00306.x.
  • Grogan, P., and S. Jonasson. 2006. Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Global Change Biology 12 (8):1479–95. doi:10.1111/j.1365-2486.2006.01184.x.
  • Grueber, C. E., S. Nakagawa, R. J. Laws, and I. G. Jamieson. 2011. Multimodel inference in ecology and evolution: Challenges and solutions. Journal of Evolutionary Biology 24 (4):699–711. doi:10.1111/j.1420-9101.2010.02210.x.
  • Hanssen-Bauer, I., E. J. Førland, I. Haddeland, H. Hisdal, S. Mayer, A. Nesje, J. E. Ø. Nilsen, S. Sandven, A. B. Sandø, A. Sorteberg, et al. 2015. Klima i Norge 2100. Miljødirektoratet.
  • Hernández, D. L., and S. E. Hobbie. 2010. The effects of substrate composition, quantity, and diversity on microbial activity. Plant and Soil 335 (1):397–411. doi:10.1007/s11104-010-0428-9.
  • Hodgson, J. G., G. Montserrat-Martí, M. Charles, G. Jones, P. Wilson, B. Shipley, M. Sharafi, B. E. L. Cerabolini, J. H. C. Cornelissen, S. R. Band, et al. 2011. Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany 108 (7):1337–45. doi:10.1093/aob/mcr225.
  • Hodgson, J. M. 1997. Soil survey field handbook, Edited by J. M. Hodgson 3rd. Technical monograph No. 5. Silsoe: Cranfield University.
  • Illeris, L., A. Michelsen, and S. Jonasson. 2003. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert. Biogeochemistry 65 (1):15–29. doi:10.1023/A:1026034523499.
  • Iversen, C. M., V. L. Sloan, P. F. Sullivan, E. S. Euskirchen, A. David McGuire, R. J. Norby, A. P. Walker, J. M. Warren, and S. D. Wullschleger. 2015. The unseen iceberg: Plant roots in arctic tundra. New Phytologist 205 (1):34–58. doi:10.1111/nph.13003.
  • Jasoni, R. L., S. D. Smith, and J. A. Arnone III. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology 11:749–56. doi:10.1111/gcb.2005.11.issue-5.
  • Jonsson, M., P. Kardol, M. Gundale, S. Bansal, M.-C. Nilsson, D. B. Metcalfe, and D. A. Wardle. 2015. Direct and indirect drivers of moss community structure, function, and associated microfauna across a successional gradient. Ecosystems 18 (1):154–69. doi:10.1007/s10021-014-9819-8.
  • Karhu, K., M. D. Auffret, J. A. J. Dungait, D. W. Hopkins, J. I. Prosser, B. K. Singh, J. A. Subke, P. A. Wookey, G. I. Agren, M. T. Sebastia, et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81. doi:10.1038/nature13604.
  • Klumpp, K., and J. Soussana. 2009. Using functional traits to predict grassland ecosystem change: A mathematical test of the response‐and‐effect trait approach. Global Change Biology 15 (12):2921–34. doi:10.1111/j.1365-2486.2009.01905.x.
  • Knowles, R. D., J. Pastor, and D. D. Biesboer. 2006. Increased soil nitrogen associated with dinitrogen‐fixing, terricolous lichens of the genus Peltigera in northern Minnesota. Oikos 114 (1):37–48. doi:10.1111/j.2006.0030-1299.14382.x.
  • Körner, C. 2003. Alpine plant life: Functional plant ecology of high mountain ecosystems, 121–48. Berlin Heidelberg: Springer-Verlag.
  • Lavorel, S. 2012. Plant functional effects on ecosystem services. Journal of Ecology 101 (1):4–8. doi:10.1111/1365-2745.12031.
  • Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16:545–56. doi:10.1046/j.1365-2435.2002.00664.x.
  • Lindahl, B. D., and A. Tunlid. 2015. Ectomycorrhizal fungi – Potential organic matter decomposers, yet not saprotrophs. New Phytologist 205 (4):1443–47. doi:10.1111/nph.13201.
  • Makarov, M. I., B. Glaser, W. Zech, T. I. Malysheva, I. V. Bulatnikova, and A. V. Volkov. 2003. Nitrogen dynamics in alpine ecosystems of the northern Caucasus. Plant and Soil 256 (2):389–402. doi:10.1023/A:1026134327904.
  • Mann, D. H., D. M. Peteet, R. E. Reanier, and M. L. Kunz. 2002. Responses of an arctic landscape to Lateglacial and early Holocene climatic changes: The importance of moisture. Quaternary Science Reviews 21 (8):997–1021. doi:10.1016/S0277-3791(01)00116-0.
  • Martin, A. C., E. S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias Fauria. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environmental Research Letters 12:8. doi:10.1088/1748-9326/aa7989.
  • Michaletz, S. T., A. J. Kerkhoff, and B. J. Enquist. 2018. Drivers of terrestrial plant production across broad geographical gradients. Global Ecology and Biogeography 27 (2):166–74. doi:10.1111/geb.12685.
  • Michelsen, A., C. Quarmby, D. Sleep, and S. Jonasson. 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115 (3):406–418.
  • Moen, A. 1998. Nasjonalatlas for Norge: Vegetasjon. Hønefoss: Statens Kartverk.
  • Molau, U., and J. M. Alatalo. 1998. Responses of subarctic-alpine plant communities to simulated environmental change: Biodiversity of bryophytes, lichens, and vascular plants. Ambio 27 (4):322–28.
  • Moore, J. A. M., J. Jiang, C. M. Patterson, M. A. Mayes, G. Wang, and A. T. Classen. 2015. Interactions among roots, mycorrhizas and free‐living microbial communities differentially impact soil carbon processes. Journal of Ecology 103 (6):1442–53. doi:10.1111/1365-2745.12484.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. Macias-Fauria, U. Sass-Klaassen, L. Lévesque, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6:1–15. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., and D. S. Hik. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions. Ecology and Evolution 3 (11):3683–700. doi:10.1002/ece3.710.
  • Myers-Smith, I. H., S. C. Elmendorf, P. S. A. Beck, M. Wilmking, M. Hallinger, D. Blok, K. D. Tape, S. A. Rayback, M. Macias-Fauria, B. C. Forbes, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5:887. doi:10.1038/nclimate2697.
  • Naito, A. T., and D. M. Cairns. 2011. Patterns and processes of global shrub expansion. Progress in Physical Geography 35 (4):423–42. doi:10.1177/0309133311403538.
  • New, M., M. Hulme, and P. D. Jones. 2000. Global 30-year mean monthly climatology, 1961–1990. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://daac.ornl.gov.
  • NGU. 2015. Norges Geologiske Undersøkelse: Berggrunn N250 og Løsmasse N50. Norges Geologiske Undersøkelse. Accessed May 2015. http://geo.ngu.no/kart/kartkatalog/.
  • Normand, S., T. T. Høye, B. C. Forbes, J. J. Bowden, A. L. Davies, B. V. Odgaard, F. Riede, J.-C. Svenning, U. A. Treier, R. Willerslev, and J. Wischnewski. 2017. Legacies of historical human activities in arctic woody plant dynamics. Annual Review of Environment and Resources 42 (1):541–567. doi:10.1146/annurev-environ-110615-085454.
  • Parker, T. C., J. A. Subke, and P. A. Wookey. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Global Change Biology 21 (5):2070–81. doi:10.1111/gcb.12793.
  • Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, M. S. Bret-Harte, W. K. Cornwell, J. M. Craine, D. E. Gurvich, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61 (3):167–234. doi:10.1071/BT12225.
  • Phillips, R. P., E. Brzostek, and M. G. Midgley. 2013. The mycorrhizal‐associated nutrient economy: A new framework for predicting carbon–nutrient couplings in temperate forests. New Phytologist 199 (1):41–51. doi:10.1111/nph.12221.
  • Post, E., and C. Pedersen. 2008. Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of Sciences 105:12353–58. doi:10.1073/pnas.0802421105.
  • Questad, H., O. Eriksson, C. Fortunel, and E. Garnier. 2007. Plant traits relate to whole‐community litter quality and decomposition following land use change. Functional Ecology 21 (6):1016–26. doi:10.1111/j.1365-2435.2007.01324.x.
  • R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
  • Ravolainen, V. T., K. A. Bråthen, R. A. Ims, N. G. Yoccoz, J. Henden, and S. T. Killengreen. 2011. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic and Applied Ecology 12:643–53. doi:10.1016/j.baae.2011.09.009.
  • Read, D. J., and J. Perez-Moreno. 2003. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? New Phytologist 157 (3):475–92. doi:10.1046/j.1469-8137.2003.00704.x.
  • Sancho, L. G., J. Belnap, C. Colesie, J. Raggio, and B. Weber. 2016. Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In Biological soil crusts: An organizing in principle in drylands, ed. B. Weber, B. Büdel, and J. Belnap, 287–304. Cham: Springer.
  • Schinner, F. 1983. Litter decomposition, CO2-release and enzyme activities in a snowbed and on a windswept ridge in an alpine environment. Oecologia 59 (2):288–91. doi:10.1007/BF00378850.
  • Settele, J., R. Scholes, R. Betts, S. E. Bunn, P. Leadley, D. Nepstad, J. T. Overpeck, and M. A. Taboada. 2014. Terrestrial and inland water systems. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change, 271–359. New York: Cambridge University Press.
  • Sinsabaugh, R. L., D. L. Moorhead, and A. E. Linkins. 1994. The enzymic basis of plant litter decomposition: Emergence of an ecological process. Applied Soil Ecology 1 (2):97–111. doi:10.1016/0929-1393(94)90030-2.
  • Sjögersten, S., and P. A. Wookey. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest–tundra heath ecotone. AMBIO: A Journal of the Human Environment 38 (1):2–10. doi:10.1579/0044-7447-38.1.2.
  • Sjögersten, S., R. van der Wal, and S. Woodin. 2006. Small-scale hydrological variation determines landscape CO2 fluxes in the high Arctic. Biogeochemistry 80 (3):205–16. doi:10.1007/s10533-006-9018-6.
  • Sonesson, M., F. E. Wielgolaski, and P. Kallio. 1975. Description of Fennoscandian tundra ecosystems. In Fennoscandian Tundra Ecosystems, ed. E. E. Wielgolaski, 3–28. Berlin: Springer-Verlag.
  • Sørensen, M. V., B. J. Graae, D. Hagen, B. J. Enquist, K. O. Nystuen, and R. Strimbeck. 2018. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities. BMC Ecology 18–29. doi:10.1186/s12898-018-0185-9.
  • Sørensen, M. V., R. Strimbeck, K. O. Nystuen, R. E. Kapas, B. J. Enquist, and B. J. Graae. 2017. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems. doi:10.1007/s10021-017-0158-4.
  • Soudzilovskaia, N. A., M. G. A. van der Heijden, J. H. C. Cornelissen, M. I. Makarov, V. G. Onipchenko, M. N. Maslov, A. A. Akhmetzhanova, and P M. van Bodegom. 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytologist 208 (1):280–293. doi:10.1111/nph.13447.
  • Speed, J. D. M., G. Austrheim, A. J. Hester, and A. Mysterud. 2013. The response of alpine Salix shrubs to long-term browsing varies with elevation and herbivore density. Arctic, Antarctic, and Alpine Research 45 (4):584–93. doi:10.1657/1938-4246-45.4.584.
  • Stark, S., and M. Väisänen. 2014. Insensitivity of soil microbial activity to temporal variation in soil N in subarctic tundra: Evidence from responses to large migratory grazers. Ecosystems 17 (5):906–17. doi:10.1007/s10021-014-9768-2.
  • Stone, M. M., J. L. DeForest, and A. F. Plante. 2014. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biology and Biochemistry 75:237–47. doi:10.1016/j.soilbio.2014.04.017.
  • Street, L. E., G. R. Shaver, M. Williams, and M. T. van Wijk. 2007. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? Journal of Ecology 95:139–50. doi:10.1111/jec.2007.95.issue-1.
  • Strimbeck, R., B. J. Graae, S. Lang, and M. V. Sørensen. 2019. Functional group contributions to carbon fluxes in arctic-alpine ecosystems. Arctic, Antarctic, and Alpine Research 51 (1):58–68. doi:10.1080/15230430.2019.1578163.
  • Sturm, M., J. Schimel, G. Michaelson, J. M. Welker, S. F. Oberbauer, G. E. Liston, J. Fahnestock, and V. E. Romanovsky. 2005. Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55 (1):17–26. doi:10.1641/0006-3568(2005)055[0017:wbpchc]2.0.co;2.
  • Sturm, M., J. P. McFadden, G. E. Liston, F. S. Chapin, C. H. Racine, and J. Holmgren. 2001. Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. Journal of Climate 14 (3):336–44. doi:10.1175/1520-0442(2001)014<0336:ssiiat>2.0.co;2.
  • Sundqvist, M. K., R. Giesler, B. J. Graae, H. Wallander, E. Fogelberg, and D. A. Wardle. 2011. Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos 120 (1):128–42. doi:10.1111/j.1600-0706.2010.18811.x.
  • Talbot, J. M., S. D. Allison, and K. K. Treseder. 2008. Decomposers in disguise: Mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology 22 (6):955–63. doi:10.1111/j.1365-2435.2008.01402.x.
  • Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12 (4):686–702. doi:10.1111/j.1365-2486.2006.01128.x.
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23 (2):GB2023. doi:10.1029/2008GB003327.
  • Tjoelker, M. G., J. Oleksyn, and P. B. Reich. 2001. Modelling respiration of vegetation: Evidence for a general temperature‐dependent Q10. Global Change Biology 7 (2):223–30. doi:10.1046/j.1365-2486.2001.00397.x.
  • Tømmervik, H., B. Johansen, J. Å. Riseth, S. R. Karlsen, B. Solberg, and K. A. Høgda. 2009. Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006. Forest Ecology and Management 257:244–57. doi:10.1016/j.foreco.2008.08.038.
  • Väre, H., M. Vestberg, and S. Eurola. 1992. Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza 1 (3):93–104. doi:10.1007/BF00203256.
  • Veen, C. G. F., M. K. Sundqvist, and D. A. Wardle. 2015. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Functional Ecology 29 (7):1365–2435. doi:10.1111/1365-2435.12421.
  • Violle, C., M. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional!. Oikos 116:882–92. doi:10.1111/oik.2007.116.issue-5.
  • Virkkala, A.-M., T. Virtanen, A. Lehtonen, J. Rinne, and M. Luoto. 2017. The current state of CO2 flux chamber studies in the Arctic tundra: A review. Progress in Physical Geography: Earth and Environment 42 (2):162–84. doi:10.1177/0309133317745784.
  • Wallander, H., H. Göransson, and U. Rosengren. 2004. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139 (1):89–97. doi:10.1007/s00442-003-1477-z.
  • Wardle, D. A., R. D. Bardgett, J. N. Klironomos, H. Setälä, W. H. van der Putten, and D. H. Wall. 2004. Ecological linkages between aboveground and belowground biota. Science 304 (5677):1629–33. doi:10.1126/science.1094875.
  • Westergaard-Nielsen, A., M. Lund, S. H. Pedersen, N. M. Schmidt, S. Klosterman, J. Abermann, and B. U. Hansen. 2017. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. AMBIO: A Journal of the Human Environment 46 (suppl. 1):39-52. doi:10.1007/s13280-016-0864-8.
  • Williams, M., L. E. Street, M. T. van Wijk, and G. R. Shaver. 2006. Identifying differences in carbon exchange among arctic ecosystem types. Ecosystems 9 (2):288–304. doi:10.1007/s10021-005-0146-y.
  • Wilmking, M., J. Harden, and K. Tape. 2006. Effect of tree line advance on carbon storage in NW Alaska. Journal of Geophysical Research: Biogeosciences 111 (G2):G02023. doi:10.1029/2005JG000074.
  • Wookey, P. A., R. Aerts, R. D. Bardgett, F. Baptist, K. A. Bråthen, J. H. C. Cornelissen, L. Gough, I. P. Hartley, D. W. Hopkins, S. Lavorels, et al. 2009. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology 15:1153–72. doi:10.1111/j.1365-2486.2008.01801.x.
  • Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–27. doi:10.1038/nature02403.