4,398
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Nieves penitentes are a new habitat for snow algae in one of the most extreme high-elevation environments on Earth

, , , , , , & ORCID Icon show all
Pages 190-200 | Received 07 Dec 2018, Accepted 07 May 2019, Published online: 12 Jun 2019

References

  • Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32–46.
  • Arroyo, M. T. K., F. A. Squeo, J. J. Armesto, and C. Villagran. 1988. Effects of aridity on plant diversity in the northern Chilean Andes—Results of a natural experiment. Annals of the Missouri Botanic Garden 75:55–78. doi:10.2307/2399466.
  • Bergeron, V., C. Berger, and M. D. Betterton. 2006. Controlled irradiative formation of penitentes. Physical Review Letters 96 (9):098502. doi:10.1103/PhysRevLett.96.098502.
  • Betterton, M. D. 2001. Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones. Physical Review E 63 (5):056129. doi:10.1103/PhysRevE.63.056129.
  • Brown, S. P., B. J. Olson, and A. Jumpponen. 2015. Fungi and algae co-occur in snow: An issue of shared habitat or algal facilitation of heterotrophs? Arctic, Antarctic, and Alpine Research 47 (4):729–49. doi:10.1657/AAAR0014-071.
  • Brown, S. P., M. C. Ungerer, and A. Jumpponen. 2016. A community of clones: Snow algae are diverse communities of spatially structured clones. International Journal of Plant Sciences 177 (5):432–39. doi:10.1086/686019.
  • Cabrol, N. A., U. Feister, D. Häder, H. Piazena, E. A. Grin, and A. Klein. 2014. Record solar UV irradiance in the tropical Andes. Frontiers in Environmental Science 2:19. doi:10.3389/fenvs.2014.00019.
  • Caporaso, J. G., K. Bittinger, F. D. Bushman, T. Z. DeSantis, G. L. Andersen, and R. Knight. 2010a. PyNAST: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26 (2):266–77. doi:10.1093/bioinformatics/btp636.
  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, et al. 2010b. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7 (5):335–36. doi:10.1038/nmeth.f.303.
  • Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, M. Bauer, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal 6(8):1621. doi:10.1038/ismej.2012.11.
  • Claudin, P., H. Jarry, G. Vignoles, M. Plapp, and B. Andreotti. 2015. Physical processes causing the formation of penitentes. Physical Review E 92 (3):033015. doi:10.1103/PhysRevE.92.033015.
  • Corripio, J. C., and R. S. Purves. 2005. Surface energy balance of high altitude glaciers in the central Andes: The effect of snow penitentes. In Climate and hydrology of mountain areas, ed. C. de Jong, D. N. Collins, and R. Ranzi, 15–28. Chichester: Wiley.
  • Costello, E. K., S. R. P. Halloy, S. C. Reed, P. Sowell, and S. K. Schmidt. 2009. Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Applied and Environmental Microbiology 75:735–47. doi:10.1128/AEM.01469-08.
  • Darcy, J. L., and S. K. Schmidt. 2016. Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biology and Biochemistry 95:156–63. doi:10.1016/j.soilbio.2015.12.019.
  • Darwin, C. 1839. Journal of researches into the geology and natural history of various countries visited by H.M.S Beagle. London: Henry Colburn Publishers.
  • DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72 (7):5069–72. doi:10.1128/AEM.03006-05.
  • Dial, R. J., G. Q. Ganey, and S. M. Skiles. 2018. What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiology Ecology 94 (3):fiy007. doi:10.1093/femsec/fiy007.
  • Dial, R. J., T. Scott Smeltz, P. F. Sullivan, C. L. Rinas, K. Timm, J. E. Geck, S. Carl Tobin, T. S. Golden, and E. C. Berg. 2016. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south‐central Alaska. Global Change Biology 22 (5):1841–56. doi:10.1111/gcb.13207.
  • Dieser, M., M. Greenwood, and C. M. Foreman. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research 42 (4):396–405. doi:10.1657/1938-4246-42.4.396.
  • Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19):2460–61. doi:10.1093/bioinformatics/btq461.
  • Freeman, K. R., A. P. Martin, D. Karki, R. C. Lynch, M. S. Mitter, A. F. Meyer, J. E. Longcore, D. R. Simmons, and S. K. Schmidt 2009. Evidence that chytrids dominate fungal communities in high-elevation soils. Proceedings of the National Academy of Sciences 106:18315–18320.
  • Ganey, G. Q., M. G. Loso, A. B. Burgess, and R. J. Dial. 2017. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nature Geoscience 10 (10):754. doi:10.1038/ngeo3027.
  • García-Descalzo, L., E. García-López, M. Postigo, F. Baquero, A. Alcazar, and C. Cid. 2013. Eukaryotic microorganisms in cold environments: Examples from Pyrenean glaciers. Frontiers in Microbiology 4:55. doi:10.3389/fmicb.2013.00077.
  • Grossman, A. R., M. Lohr, and C. S. Im. 2004. Chlamydomonas reinhardtii in the landscape of pigments. Annual Review of Genetics 38:119–73. doi:10.1146/annurev.genet.38.072902.092328.
  • Hobley, D. E. J., J. M. Moore, and A. D. Howard. 2013. How rough is the surface of Europa at lander scale? 44th Lunar and Planetary Science Conference, March 18–22, The Woodlands, Texas.
  • Hoham, R. W., and B. Duval. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Snow Ecology, ed. H. G. Johns, J. W. Pomeroy, D. A. Walker, and R. S. Hoham, 186–203. New York: Cambridge University Press.
  • Holzinger, A., and C. Lütz. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37 (3):190–207. doi:10.1016/j.micron.2005.10.015.
  • Komárek, J., and L. Nedbalová. 2007. Green cryosestic algae. In Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 11, ed. J. Seckbach, 321–342. Dordrecht: Springer.
  • Lliboitry, L. 1954. The origin of penitentes. Journal of Glaciology 2 (15):331–38. doi:10.1017/S0022143000025181.
  • Lozupone, C., and R. Knight. 2005. UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71 (12):8228–35. doi:10.1128/AEM.71.12.8228-8235.2005.
  • Lozupone, C. A., M. Hamady, S. T. Kelley, and R. Knight. 2007. Quantitative and qualitative ß diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73 (5):1576–85. doi:10.1128/AEM.01996-06.
  • Lutz, S., A. M. Anesio, S. E. Jorge Villar, and L. G. Benning. 2014. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiology Ecology 89 (2):402–14. doi:10.1111/1574-6941.12351.
  • Lutz, S., A. M. Anesio, R. Raiswell, A. Edwards, R. J. Newton, F. Gill, and L. G. Benning. 2016. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nature Communications 7:11968. doi:10.1038/ncomms11968.
  • Lynch, R. C., A. J. King, M. E. Farías, P. Sowell, C. Vitry, and S. K. Schmidt. 2012. The potential for microbial life in the highest‐elevation (> 6000 masl) mineral soils of the Atacama region. Journal of Geophysical Research: Biogeosciences 117 (G2). doi:10.1029/2012JG001961.
  • Matsuzaki, R., Y. Hara, and H. Nozaki. 2014. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia 53 (3):293–304. doi:10.2216/14-3.1.
  • Matsuzaki, R., H. Kawai-Toyooka, Y. Hara, and H. Nozaki. 2015. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 54 (5):491–502. doi:10.2216/15-33.1.
  • Matthes, F. E. 1934. Ablation of snow‐fields at high altitudes by radiant solar heat. EOS Transactions American Geophysical Union 15 (2):380–85. doi:10.1029/TR015i002p00380.
  • Moores, J. E., C. L. Smith, A. D. Toigo, and S. D. Guzewich. 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541:188–90. doi:10.1038/nature20779.
  • Müller, T., W. Bleiß, C. D. Martin, S. Rogaschewski, and G. Fuhr. 1998. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biology 20 (1):14–32. doi:10.1007/s003000050272.
  • Muñoz‐Martín, M. Á., I. Becerra‐Absalón, E. Perona, L. Fernández‐Valbuena, F. Garcia‐Pichel, and P. Mateo. 2019. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist 221 (1):123–41. doi:10.1111/nph.15355.
  • Naff, C. S., J. L. Darcy, and S. K. Schmidt. 2013. Phylogeny and biogeography of an uncultured clade of snow chytrids. Environmental Microbiology 15 (10):2672–80. doi:10.1111/1462-2920.12116.
  • Nedbalová, L., and P. Sklenár. 2008. New records of snow algae from the Andes of Ecuador. Arnaldoa 15:17–20.
  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, H. Wagner, et al. 2013. Package ‘vegan’. Community Ecology Package, Version 2:9.
  • Price, M. N., P. S. Dehal, and A. P. Arkin. 2009. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26 (7):1641–50. doi:10.1093/molbev/msp077.
  • Pulschen, A. A., F. Rodrigues, R. T. D. Duarte, G. G. Araujo, I. F. Santiago, I. G. Paulino-Lima, C. A. Rosa, M. J. Kato, V. H. Pellizari, and D. Galante. 2015. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. MicrobiologyOpen 4 (4):574–88. doi:10.1002/mbo3.264.
  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2012. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41 (D1):D590–D596. doi:10.1093/nar/gks1219.
  • Quesada, A., and W. F. Vincent. 2012. Cyanobacteria in the cryosphere: Snow, ice and extreme cold. In Ecology of Cyanobacteria II, ed. B. Whitton, 387–399. Dordrecht: Springer.
  • Raggio, J., T. G. A. Green, P. D. Crittenden, A. Pintado, M. Vivas, S. Pérez-Ortega, A. De Los Ríos, and L. G. Sancho. 2012. Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis 56 (2):55–66. doi:10.1007/s13199-012-0159-1.
  • Remias, D. 2012. Cell structure and physiology of alpine snow and ice algae. In Plants in Alpine Regions, ed. C. Lütz, 175–85. Vienna: Springer.
  • Remias, D., A. Holzinger, and C. Lütz. 2009. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–12. doi:10.2216/08-13.1.
  • Remias, D., U. Karsten, C. Lütz, and T. Leya. 2010. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86. doi:10.1007/s00709-010-0123-y.
  • Remias, D., U. Lütz-Meindl, and C. Lütz. 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology 40 (3):259–68. doi:10.1080/09670260500202148.
  • Remias, D., L. Procházková, A. Holzinger, and L. Nedbalová. 2018. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia 57 (5):581–92. doi:10.2216/18-45.1.
  • Robertson, J. A., A. Ślipiński, K. Hiatt, K. B. Miller, M. F. Whiting, and J. V. Mchugh. 2013. Molecules, morphology and minute hooded beetles: A phylogenetic study with implications for the evolution and classification of Corylophidae (Coleoptera: Cucujoidea). Systematic Entomology 38 (1):209–32. doi:10.1111/sen.2013.38.issue-1.
  • Ryan, J. C., A. Hubbard, M. Stibal, T. D. Irvine-Fynn, J. Cook, L. C. Smith, K. Cameron, and J. Box. 2018. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nature Communications 9 (1):1065. doi:10.1038/s41467-018-03353-2.
  • Schmidt, S. K., E. M. S. Gendron, K. Vincent, A. J. Solon, P. Sommers, Z. R. Schubert, L. Vimercati, D. L. Porazinska, J. L. Darcy, and P. Sowell. 2018. Life at extreme elevations on Atacama volcanoes: The closest thing to Mars on Earth? Antonie Van Leeuwenhoek 111 (8):1389–401. doi:10.1007/s10482-018-1066-0.
  • Schmidt, S. K., R. C. Lynch, A. J. King, D. Karki, M. S. Robeson, L. Nagy, M. W. Williams, M. S. Mitter, and K. R. Freeman. 2011. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proceedings of the Royal Society B 278:702–08. doi:10.1098/rspb.2010.1254.
  • Schmidt, S. K., D. R. Nemergut, A. E. Miller, K. R. Freeman, A. J. King, and A. Seimon. 2009. Microbial activity and diversity during extreme freeze–thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13 (5):807–16. doi:10.1007/s00792-009-0268-9.
  • Segawa, T., R. Matsuzaki, N. Takeuchi, A. Akiyoshi, F. Navarro, S. Sugiyama, T. Yonezawa, and H. Mori. 2018. Bipolar dispersal of red-snow algae. Nature Communications 9 (1):3094. doi:10.1038/s41467-018-05521-w.
  • Solon, A. J., L. Vimercati, J. L. Darcy, P. Arán, D. Porazinska, C. Dorador, M. E. Farías, and S. K. Schmidt. 2018. Microbial communities of high-elevation fumaroles, penitentes, and dry tephra “soils” of the Puna de Atacama volcanic zone. Microbial Ecology 76 (2):340–51. doi:10.1007/s00248-017-1129-1.
  • Sommers, P., J. L. Darcy, D. L. Porazinska, E. M. S. Gendron, A. G. Fountain, F. Zamora, K. Vincent, K. M. Cawley, A. Solon, L. Vimercati, et al. 2019. Comparison of microbial communities in the sediments and water columns of frozen cryoconite holes in the McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology. doi:10.3389/fmicb.2019.00065.
  • Takeuchi, N. 2009. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. Journal of Glaciology 55 (192):701–09. doi:10.3189/002214309789470914.
  • Takeuchi, N., and S. Kohshima. 2004. A snow algal community on a Patagonian glacier, Tyndall Glacier in the Southern Patagonia Icefield. Arctic, Antarctic, and Alpine Research 36 (1):92–99. doi:10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2.
  • Takeuchi, N., S. Kohshima, and K. Seko. 2001. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arctic, Antarctic, and Alpine Research 33 (2):115–22. doi:10.1080/15230430.2001.12003413.
  • Vimercati, L., J. L. Darcy, and S. K. Schmidt. 2019. The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Scientific Reports. In press.
  • Vimercati, L., S. Hamsher, Z. Schubert, and S. K. Schmidt. 2016. Growth of a high-elevation Cryptococcus sp. during extreme freeze-thaw cycles. Extremophiles 20 (5):579–88. doi:10.1007/s00792-016-0844-8.
  • Vincent, W. F. 2000. Cyanobacterial dominance in the polar regions. In The ecology of cyanobacteria, ed. B. A. Whitton and M. Potts, 321–440. Dordrecht: Springer.
  • Xiao, X., H. Sogge, K. Lagesen, A. Tooming-Klunderud, K. S. Jakobsen, and T. Rohrlack. 2014. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PloS One 9 (8):e106510. doi:10.1371/journal.pone.0106510.
  • Zhang, X., X. Ma, N. Wang, and T. Yao. 2009. New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiology Ecology 67 (1):21–29. doi:10.1111/j.1574-6941.2008.00604.x.