1,062
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Broad-scale rather than fine-scale environmental variation drives body size in a wandering predator (Araneae, Lycosidae)

ORCID Icon, , , ORCID Icon, &
Pages 315-326 | Received 11 Feb 2019, Accepted 01 Jul 2019, Published online: 09 Aug 2019

References

  • Ameline, C., C. Puzin, J. J. Bowden, K. Lambeets, P. Vernon, and J. Pétillon. 2017. Habitat specialization and climate affect arthropod fitness: A comparison of generalist vs. specialist spider species in Arctic and temperate biomes. Biological Journal of the Linnean Society 121:592–99. doi:10.1093/biolinnean/blx014.
  • Ameline, C., T. Høye, J. Bowden, R. Hansen, O. Liset Pryds Hansen, C. Puzin, P. Vernon, and J. Pétillon. 2018. Elevational variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae). Polar Biology 41:2561–74. doi:10.1007/s00300-018-2391-5.
  • Angiletta, M. J., Jr., H. P. Niewiarowski, A. E. Dunham, A. D. Leaché, and W. P. Porter. 2004. Bergmann’s clines in ectotherms: Illustrating a life-history perspective with Sceloporine Lizards. American Naturalist 164:168–83. doi:10.1086/425222.
  • Ashton, K. G., and C. R. Feldman. 2003. Bergmann’s rule in non-avian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 57:1151–63. doi:10.1111/j.0014-3820.2003.tb00324.x.
  • Atkinson, D., and R. M. Sibly. 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology & Evolution 12:235–39. doi:10.1016/s0169-5347(97)01058-6.
  • Becker, A., C. Körner, J.-J. Brun, A. Guisan, and U. Tappeiner. 2007. Ecological and land use studies along elevational gradients. Mountain Research and Development 27:58–65. doi:10.1659/0276-4741(2007)27[58:EALUSA]2.0.CO;2.
  • Beckers, N., N. Hein, K. A. Vanselow, and J. Löffler. 2018. Effects of microclimatic thresholds on the activity-abundance and distribution patterns of alpine Carabidae species. Annales Zoologici Fennici 55:25–44. (in press). doi:10.5735/086.055.0104.
  • Blanckenhorn, W. U., and M. Demont. 2004. Bergmann and converse Bergmann latitudinal clines in arthropods: Two ends of a continuum? Integrative and Comparative Biology 44:413–24. doi:10.1093/icb/44.6.413.
  • Blandenier, G., O. T. Bruggisser, O. P. Rohr, and L. F. Bersier. 2013. Are phenological patterns of ballooning spiders linked to habitat characteristics? Journal of Arachnology 41:126–32. doi:10.1636/P12-48.
  • Bonte, D., B. Bossuyt, and L. Lens. 2007. Aerial dispersal plasticity under different wind velocities in a salt marsh wolf spider. Behavioral Ecology 18:438–43. doi:10.1093/beheco/arl103.
  • Bonte, D., N. Vandenbroecke, L. Lens, and J. P. Maelfait. 2003. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proceedings: Biological Sciences 270:1601–07. doi:10.1098/rspb.2003.2432.
  • Bowden, J. J., T. T. Høye, and C. M. Buddle. 2013. Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biology 36:831–36. doi:10.1007/s00300-013-1308-6.
  • Breiman, L. 2001. Random forests. Machine Learning. 45:5–32. doi:10.1023/A:1010933404324.
  • Brenning, A. 2009. Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sensing of Environment 113:239–47. doi:10.1016/j.rse.2008.09.005.
  • Buddle, C. M. 2000. Life history of Pardosa moesta and Pardosa mackenziana (Araneae, Lycosidae) in central Alberta, Canada. Journal of Arachnology 28:319–28. doi:10.1636/0161-8202(2000)028[0319:LHOPMA]2.0.CO;2.
  • Chevin, L.-M., R. Lande, and G. M. Mace. 2010. Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology 8 (4):e1000357. doi:10.1371/journal.pbio.1000357.
  • Chown, S. L., and K. J. Gaston. 2010. Body size variation in insects: A macroecological perspective. Biological Reviews 85:139–69. doi:10.1111/j.1469-185X.2009.00097.x.
  • Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., and J. J. Lawler 2007. Random forests for classification in ecology. Ecology 88:2783–92. doi:10.1890/07-0539.1.
  • Dahl, E. 1986. Zonation in Arctic and alpine tundra and fellfield ecobiomes. In Ecosystem theory and application, ed. N. Polunin, 35–62. Chichester: Wiley.
  • Edgar, W. D. 1971. Seasonal weight changes, age structure, natality and mortality in the wolf spider Pardosa lugubris Walck in central Scotland. Oikos 22:84–92. doi:10.2307/3543365.
  • Edgar, W. D. 1972. The life-cycle of the wolf spider Pardosa lugubris in Holland. Journal of Zoology 168:1–7. doi:10.1111/j.1469-7998.1972.tb01336.x.
  • Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. New York: Chapman & Hall.
  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S.  Ferrier, A. Guisan,  R. J. Hijmans, F.  Huettmann, J. R. Leathwick, A. Lehmann, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–51. doi:10.1111/j.2006.0906-7590.04596.x.
  • Entling, W., M. H. Schmidt-Entling, S. Bacher, R. Brandl, and W. Nentwig. 2010. Body size-climate relationships of European spiders. Journal of Biogeography 37:477–85. doi:10.1111/j.1365-2699.2009.02216.x.
  • Fattorini, S., R. Lo Monaco, A. Di Giulio, and W. Ulrich. 2014. Climatic correlates of body size in European tenebrionid beetles (Coleoptera: Tenebrionidae). Organisms Diversity & Evolution 14:215–24. doi:10.1007/s13127-013-0164-0.
  • Finch, O.-D., and J. Löffler. 2010. Indicators of species richness at the local scale in an alpine region: A comparative approach between plant and invertebrate taxa. Biodiversity and Conservation 19:1341–52. doi:10.1007/s10531-009-9765-5.
  • Fox, C. W., and M. E. Czesak. 2000. Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology 45:341–69. doi:10.1146/annurev.ento.45.1.341.
  • Frick, H., W. Nentwig, and C. Kropf. 2007. Influence of stand-alone trees on epigeic spiders (Araneae) at the alpine timberline. Annales Zoologici Fennici 44:43–57.
  • Gjærevoll, O. 1956. The plant communities of the Scandinavian Alpine snow-beds. Trondheim: Kongelige Norske Videnskabers Selskabs Skrifter.
  • Goldsbrough, C. L., D. F. Hochuli, and R. Shine. 2004. Fitness benefits of retreat-site selection: Spiders, rocks, and thermal cues. Ecology 85:1635–41. doi:10.1890/02-0770.
  • Hagstrum, D. W. 1971. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Annals of the Entomological Society of America 64:757–60. doi:10.1093/aesa/64.4.757.
  • Hauge, E., and D. Refseth. 1979. The spider fauna of 5 alpine and subalpine habitats in the Jotunheimen area, Southern Norway. Norwegian Journal of Entomology 26:84–90.
  • Hein, N., H. Feilhauer, J. Löffler, and O.-D. Finch. 2015. Elevational variation of reproductive traits in five Pardosa (Lycosidae) species. Arctic, Antarctic, and Alpine Research 47:67–73. doi:10.1657/AAAR0013-111.
  • Hein, N., H. Feilhauer, O.-D. Finch, S. Schmidtlein, and J. Löffler. 2014. Snow cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde 68:157–72. doi:10.3112/erdkunde.2014.03.01.
  • Hein, N., M. R. Brendel, H. Feilhauer, O.-D. Finch, and J. Löffler. 2018. Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae). Polar Biology 41:1607–17. doi:10.1007/s00300-018-2301-x.
  • Hendrickx, F., and J. P. Maelfait. 2003. Life cycle, reproductive patterns and their year-to-year variation in field population of the wolf spider Pirata piraticus (Araneae, Lycosidae). Journal of Arachnology 31:331–39. doi:10.1636/m01-98.
  • Hendrickx, F., J. P. Maelfait, M. Speelmans, and N. M. Van Straalen. 2003. Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134:189–94. doi:10.1007/s00442-002-1031-4.
  • Hodkinson, I. D. 2005. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews 80:489–513. doi:10.1017/s1464793105006767.
  • Homburg, K., A. Schuldt, C. Drees, and T. Assmann. 2013. Broad-scale geographic patterns in body size and hind wing development of western Palaearctic carabid beetles (Coleoptera: Carabidae). Ecography 36:166–77. doi:10.1111/j.1600-0587.2012.07488.x.
  • Høye, T. T., and D. S. Sikes. 2013. Arctic entomology in the 21st century. The Canadian Entomologist 145:125–30. doi:10.4039/tce.2013.14.
  • Høye, T. T., and J. U. Hammel. 2010. Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Climate Research 41:259–65. doi:10.3354/cr00855.
  • Høye, T. T., J. U. Hammel, T. Fuchs, and S. Toft. 2009. Climate change and sexual size dimorphism in an Arctic spider. Biology Letters 5:542–44. doi:10.1098/rsbl.2009.0169.
  • Jakob, E. M., S. D. Marshall, and G. W. Uetz. 1996. Estimating fitness: A comparison of body condition indices. Oikos 77:61–67. doi:10.2307/3545585.
  • Lee, J. E., M. J. Somers, and S. L. Chown. 2011. Density, body size and sex ratio of an indigenous spider along an altitudinal gradient in the sub-Antarctic. Antarctic Science 24:15–22. doi:10.1017/s0954102011000629.
  • Legault, G., and A. E. Weis. 2013. The impact of snow accumulation on a heath spider community in a sub-Arctic landscape. Polar Biology 36:885–94. doi:10.1007/s00300-013-1313-9.
  • Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–67. doi:10.2307/1941447.
  • Liaw, A., and M. Wiener. 2002. Classification and regression by randomforest. R News 2:18–22.
  • Liaw, A., and M. Wiener. 2015. Randomforest: Breiman and Cutler’s random forests for classification and regression, version 4.6-12. Accessed May 30, 2017. http://cran.r-project.org/web/packages/randomForest/randomForest.pdf.
  • Löffler, J. 2002. Altitudinal changes of ecosystem dynamics in the central Norwegian high mountains. Die Erde 133:227–58.
  • Löffler, J. 2003. Micro-climatic determination of vegetation patterns along topographical, altitudinal, and oceanic-continental gradients in the high mountains of Norway. Erdkunde 57:232–49. doi:10.3112/erdkunde.
  • Löffler, J. 2005. Snow cover dynamics, soil moisture variability and vegetation ecology in central Norwegian high mountain catchments. Hydrological Processes 19:2385–405. doi:10.1002/hyp.5891.
  • Löffler, J. 2007. The influence of micro-climate, snow cover, and soil moisture on ecosystem functioning in high mountains. Journal of Geographical Science 17:3–19. doi:10.1007/s11442-007-0003-3.
  • Löffler, J., and O.-D. Finch. 2005. Spatio-temporal gradients between high mountain ecosystems of central Norway. Arctic, Antarctic, and Alpine Research 37:499–513. doi:10.1657/1523-0430(2005)037[0499:SGBHME]2.0.CO;2.
  • Löffler, J., R. Pape, and D. Wundram. 2006. The climatologic significance of topography, altitude and region in high mountains – A survey of oceanic-continental differentiations of the Scandes. Erdkunde 60:15–24. doi:10.3112/erdkunde.2006.01.02.
  • Löffler, U. C. M., H. Cypionka, and J. Löffler. 2008. Soil microbial activity along an arctic-alpine altitudinal gradient from a seasonal perspective. European Journal of Soil Science 59:842–54. doi:10.1111/j.1365-2389.2008.01054.x.
  • Lowe, E. C., S. M. Wilder, D. F. Hochuli, and M. G. (Gee) Chapman. 2014. Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider. PLoS ONE 9 (8):e105480. doi:10.1371/journal.pone.0105480.
  • Mani, M. S. 1968. Ecology and biogeography of high altitude insects. The Hague: W. Junk. doi:10.1007/978-94-017-1339-9.
  • Marshall, S. D., and A. L. Rypstra. 1999. Spider competition in structurally simple ecosystems. Journal of Arachnology 27:343–50.
  • Mayr, M., K. A. Vanselow, and C. Samimi. 2018. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000-2016) on the controls of fire activity in Namibia from spatial predictive models. Ecological Indicators 91:324–37. doi:10.1016/j.ecolind.2018.04.022.
  • Merrett, P., and R. Snazell. 1983. A comparison of pitfall trapping and vacuum sampling for assessing spider faunas on heathland at Ashdown Forest, south-east England. Bulletin - British Arachnological Society 6:1–13.
  • MET Norway. 2018. The norwegian meteorological institute. www.senorge.no.
  • Miyashita, K. 1968. Growth and development of Lycosa T-insignita BOES. et STR. (Araneae: Lycosidae) under different feeding conditions. Applied Entomology and Zoology 3:81–88. doi:10.1303/aez.3.81.
  • Moen, A. 1998. Nasjonalatlas for Norge: Vegetasjon. Hønefoss: Statens Kartverk.
  • Morse, D. H. 1997. Distribution, movement, and activity patterns of an intertidal wolf spider Pardosa lapidicina population (Araneae, Lycosidae). Journal of Arachnology 25:1–10.
  • Morse, D. H. 2002. Orientation and movement of wolf spiders Pardosa lapidicina (Araneae, Lycosidae) in the intertidal zone. Journal of Arachnology 30:601–09. doi:10.1636/0161-8202(2002)030[0601:OAMOWS]2.0.CO;2.
  • Mousseau, T. A. 1997. Ectotherms follow the converse to Bergman’s rule. Evolution 51:630–32. doi:10.1111/j.1558-5646.1997.tb02453.x.
  • Muff, P., C. Kropf, H. Frick, W. Nentwig, and M. H. Schmidt-Entling. 2009. Co-existence of divergent communities at natural boundaries: Spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conservation and Diversity 2:36–44. doi:10.1111/j.1752-4598.2008.00037.x.
  • Murphy, M. A., J. S. Evans, and A. Storfer. 2010. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–61.
  • Nagy, L., and G. Grabherr. 2009. The biology of Alpine habitats. New York: Oxford University Press.
  • Naujok, J., and O.-D. Finch. 2004. Communities and spatio-temporal patterns of epigeic beetles (Coleoptera) in high mountain habitats of the Central Norwegian Scandes, with special emphasis on carabid beetles (Carabidae). Norwegian Journal of Entomology 51:31–56.
  • Nentwig, W., T. Blick, D. Gloor, A. Hänggi, and C. Kropf. 2019. Spinnen Europas. Araneae Version 06.2019. https://www.araneae.nmbe.ch.
  • Oksanen, L. 2001. Logic of experiments in ecology: Is pseudoreplication a pseudoissue? Oikos 94:27–38. doi:10.1034/j.1600-0706.2001.11311.x.
  • Opell, B. D. 2010. Bergmanns’s size cline in New Zealand marine spray zone spiders (Araneae: Anyphaenidae: Amaurobioides). Biological Journal of the Linnean Society 101:78–92. doi:10.1111/j.1095-8312.2010.01480.x.
  • Otto, C., and B. S. Svensson. 1982. Structure of communities of ground living spiders along altitudinal gradients. Holarctic Ecology 5:35–47.
  • Penell, A., F. Raub, and H. Höfer. 2018. Estimating biomass from body size of European spiders based on regression models. The Journal of Arachnology 46:413–20. doi:10.1636/JoA-S-17-044.1.
  • Pétillon, J., C. Puzin, A. Acou, and Y. Outreman. 2009. Plant invasion phenomenon enhances reproduction performance in an endangered spider. Naturwissenschaften 96:1241–46. doi:10.1007/s00114-009-0589-7.
  • Pickavance, J. R. 2001. Life-cycles of four species of Pardosa (Araneae, Lycosidae) from the island of Newfoundland, Canada. Journal of Arachnology 29:367–77. doi:10.1636/0161-8202(2001)029[0367:LCOFSO]2.0.CO;2.
  • Prasad, A., L. Iverson, and A. Liaw. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9:181–99. doi:10.1007/s10021-005-0054-1.
  • Prenter, J., R. W. Elwood, and W. I. Montgomery. 1999. Sexual size dimorphism and reproductive investment by female spiders: A comparative analysis. Evolution 53:1987–94. doi:10.2307/2640458.
  • Puzin, C., A. Acou, D. Bonte, and J. Pétillon. 2011. Comparison of reproductive traits between two salt-marsh wolf spiders (Araneae, Lycosidae) under different habitat suitability conditions. Animal Biology 61:127–38. doi:10.1163/157075511X566461.
  • Puzin, C., B. Leroy, and J. Pétillon. 2014. Intra- and inter-specific variation in size and habitus of two sibling spider species (Araneae: Lycosidae): Taxonomic and biogeographic insights from sampling across Europe. Biological Journal of the Linnean Society 113:85–96. doi:10.1111/bij.12303.
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rahbek, C. 1995. The elevational gradient of species richness: A uniform pattern? Ecography 11:1551–66. doi:10.1111/j.1600-0587.1995.tb00341.x.
  • Rasband, W. S. 2007. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/,1997–2012.
  • Renault, D., C. Puzin, N. Foucreau, A. Bouchereau, and J. Pétillon. 2016. Chronic exposure to soil salinity in terrestrial species: Does plasticity and underlying physiology differ among specialized ground-dwelling spiders? Journal of Insect Physiology 90:49–58. doi:10.1016/j.jinsphys.2016.05.005.
  • Richter, C. 1970. Aerial dispersal in relation to habitat in eight wolf spider species (Pardosa, Araneae, Lycosidae). Oecologia 5:200–14. doi:10.1007/bf00344884.
  • Samu, F., A. Sziranyi, and B. Kiss. 2003. Foraging in agricultural fields: Local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider. Animal Behavior 66:939–47. doi:10.1006/anbe.2003.2265.
  • Schaefer, M. 1970. Einfluss der Raumstruktur in Landschaften der Meeresküste auf das Verteilungsmuster der Tierwelt. Zoologische Jahrbücher, Abteilung Systematik, Ökologie Und Geographie Der Tiere 97:55–124.
  • Scherrer, D., and C. Körner. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38:406–16. doi:10.1111/j.1365-2699.2010.02407.x.
  • Shelomi, M. 2012. Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist 180:511–19. doi:10.1086/667595.
  • Simpson, M. R. 1995. Covariation of spider egg and clutch size: The influence of foraging and parental care. Ecology 76:795–800. doi:10.2307/1939345.
  • Smith, C. C., and S. D. Fretwell. 1974. The optimal balance between size and number of offspring. The American Naturalist 108:499–506. doi:10.1086/282929.
  • Steigen, A. L. 1975. Energetics in a population of Pardosa palustris L. (Araneae, Lycosidae) on Hardangervidda. Ecological Studies 17:129–44. doi:10.1007/978-3-642-66276-8_1.
  • Strathdee, A. T., and J. S. Bale. 1998. Life on the edge: Insect ecology in arctic environments. Annual Review of Entomology 43:85–106. doi:10.1146/annurev.ento.43.1.85.
  • Thaler, K. 2003. The diversity of high altitude arachnids (Araneae, Opiliones, Pseudoscorpiones) in the Alps. In Alpine biodiversity in Europe, ed. L. Nagy, G. Grabherr, C. Körner, and D. B. A. Thompson, 281–96. London: Springer.
  • Toft, S. 1979. Life histories of eight Danish wetland spiders. Entmologiske Meddelelser 47:22–32.
  • Topping, C. J., and K. D. Sunderland. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology 29:485–91. doi:10.2307/2404516.
  • Torres–Sánchez, M. P., and T. R. Gasnier. 2010. Patterns of abundance, habitat use and body size structure of Phoneutria reidyi and P. fera (Araneae: Ctenidae) in a Central Amazonian rainforest. Journal of Arachnology 38:433–40. doi:10.1636/P08-93.1.
  • Uetz, G. W., and J. D. Unzicker. 1976. Pitfall trapping in ecological studies of wandering spiders. Journal of Arachnology 3:101–11.
  • Willmer, P., G. Stone, and I. Johnston. 2004. Environmental physiology of animals. Oxford: Blackwell-Science.
  • Wise, D. H. 1993. Spiders in ecological webs. Cambridge: Cambridge University Press.
  • Woodcock, B. A. 2005. Pitfall trapping in ecological studies. In Insect sampling in forest ecosystems, ed. S. R. Leather, 37–57. Oxford: Blackwell Science Ltd. doi:10.1002/9780470750513.ch3.
  • World Spider Catalog. 2017. World spider catalog. Bern: Natural History Museum. Accessed June 1, 2017. http://wsc.nmbe.ch.
  • Wundram, D., R. Pape, and J. Löffler. 2010. Alpine soil temperature variability at multiple scales. Arctic, Antarctic, and Alpine Research 42:117–28. doi:10.1657/1938-4246-42.1.117.