1,745
Views
10
CrossRef citations to date
0
Altmetric
Research Article

NDVI–Climate relationships in high-latitude mountains of Alaska and Yukon Territory

ORCID Icon & ORCID Icon
Pages 397-411 | Received 28 Jan 2019, Accepted 27 Jul 2019, Published online: 03 Sep 2019

References

  • Ackerman, D. E., D. Griffin, S. E. Hobbie, K. Popham, E. Jones, and J. C. Finlay. 2018. Uniform shrub growth response to June temperature across the North Slope of Alaska. Environmental Research Letters 13:044013. doi:10.1088/1748-9326/aab326.
  • Arendt, A. A., K. A. Echelmeyer, W. D. Harrison, C. S. Lingle, and V. B. Valentine. 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297 (5580):382–86. doi:10.1126/science.1072497.
  • Balser, A. W., J. B. Jones, and R. Gens. 2014. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. Journal of Geophysical Research: Earth Surface 119:1106–20.
  • Barber, V. A., G. P. Juday, and B. P. Finney. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–73. doi:10.1038/35015049.
  • Barber, V. A., G. P. Juday, B. P. Finney, and M. Wilmking. 2004. Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: Evidence for changing synoptic climate regimes. Climatic Change 63:91–120. doi:10.1023/B:CLIM.0000018501.98266.55.
  • Beck, P. S. A., and S. J. Goetz. 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environmental Research Letters 6:045501. doi:10.1088/1748-9326/6/4/045501.
  • Bhatt, U. S., D. A. Walker, M. K. Raynolds, J. C. Comiso, H. E. Epstein, G. Jia, R. Gens, J. E. Pinzon, C. J. Tucker, C.E. Tweedie, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea-ice decline. Earth Interactions 14:1–20. doi:10.1175/2010EI315.1.
  • Bhatt, U. S., D. A. Walker, M. K. Raynolds, P. A. Bieniek, H. Epstein, J. C. Comiso, J. E. Pinzon, C. J. Tucker, M. Steele, W. Ermold, et al. 2017. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environmental Research Letters 12:055003. doi:10.1088/1748-9326/aa6b0b.
  • Bhatt, U. S., D. A. Walker, M. K. Raynolds, P. A. Bieniek, H. E. Epstein, J. C. Comiso, J. E. Pinzon, C. J. Tucker, and I. V. Polyakov. 2013. Recent declines in warming and vegetation greening trends over Pan-Arctic tundra. Remote Sensing 5:4229–54. doi: 10.3390/rs5094229.
  • Blandford, T., K. Humes, B. Harshburger, B. Moore, V. Walden, and H. Ye. 2008. Seasonal and synoptic variations in near‐surface air temperature lapse rates in a mountainous basin. Journal of Applied Meteorology & Climatology 47:249–61. doi:10.1175/2007JAMC1565.1.
  • Blok, D., G. Schaepman-Strub, H. Bartholomeus, M. M. Heijmans, T. C. Maximov, and F. Berendse. 2011b. The response of Arctic vegetation to the summer climate: Relation between shrub cover, NDVI, surface albedo, and temperature. Environmental Research Letters 6:035502. doi:10.1088/1748-9326/6/3/035502.
  • Blok, D., U. Sass-Klaassen, G. Schaepman-Strub, M. M. Heijmans, P. Sauren, and F. Berendse. 2011a. What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8:1169–79. doi:10.5194/bg-8-1169-2011.
  • Boelman, N. T., L. Gough, J. R. McLaren, and H. Greaves. 2011. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in arctic tundra? Environmental Research Letters 6:035501. doi:10.1088/1748-9326/6/3/035501.
  • Bokhorst, S., J. W. Bjerke, H. Tømmervik, T. V. Callaghan, and G. K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97:1408–15. doi:10.1111/j.1365-2745.2009.01554.x.
  • Bokhorst, S., J. W. Bjerke, L. E. Street, T. V. Callaghan, and G. K. Phoenix. 2011. Impacts of multiple extreme winter warming events on sub-Arctic heathland: Phenology, reproduction, growth, and CO2 flux responses. Global Change Biology 17:2817–30. doi:10.1111/j.1365-2486.2011.02424.x.
  • Bunn, A. G., S. J. Goetz, and G. J. Fiske. 2005. Observed and predicted responses of plant growth to climate across Canada. Geophysical Research Letters 32:L16710. doi:10.1029/2005GL023646.
  • Calef, M. P., A. Varyak, A. D. McGuire, F. S. Chapin, and K. B. Reinhold. 2015. Recent changes in annual area burned in interior Alaska: The impact of fire management. Earth Interactions 19 (5):1–17. doi:10.1175/EI-D-14-0025.1.
  • Chapin, F. S. 1983. Direct and indirect effects of temperature on arctic plants. Polar Biology 2:47–52. doi:10.1007/BF00258285.
  • Chapin, F. S., G. R. Shaver, A. E. Giblin, K J.. Nadelhoffer, and J. A. Laundre. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76 (3):694–711. doi: 10.2307/1939337.
  • Clegg, B. F., and F. S. Hu. 2010. An oxygen-isotope record of Holocene climate change in south-central Brooks Range, Alaska. Quaternary Science Reviews 29:928–39. doi:10.1016/j.quascirev.2009.12.009.
  • D’Arrigo, R. D., R. K. Kaufmann, N. Davi, G. C. Jacoby, C. Laskowski, R. B. Myenie, and P. Cherubini. 2004. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles 18:GB3021. doi:10.1029/2004GB002249.
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28:2031–64. doi:10.1002/joc.v28:15.
  • Das, I., R. Hock, E. Berthier, and C. S. Lingle. 2014. 21st-century increase in glacier mass loss in the Wrangell Mountains, Alaska, USA, from airborne laser altimetry and satellite stereo imagery. Journal of Glaciology 60:283–93. doi:10.3189/2014JoG13J119.
  • Dearborn, K., and R. K. Danby. 2018. Climatic drivers of tree growth at tree line in Southwest Yukon change over time and vary between landscapes. Climatic Change 150:211–25. doi:10.1007/s10584-018-2268-1.
  • Dutrieux, L. P., H. Bartholomeus, M. Herold, and J. Verbesselt. 2012. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11). Environmental Research Letters 7:044028. doi:10.1088/1748-9326/7/4/044028.
  • Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Bjork, N. Boulanger-Lapointe, E. J. Cooper, J. H. C. Cornelissen, T. A. Day, E. Dorrepaal, T. G. Elumeeva, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2:453–57. doi:10.1038/nclimate1465.
  • Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E. Pinzon. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters 7:015506. doi:10.1088/1748-9326/7/1/015506.
  • Fleming, M. D., F. S. Chapin, W. Cramer, G. L. Hufford, and M. C. Serreze. 2000. Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record. Global Change Biology 6:49–58. doi:10.1046/j.1365-2486.2000.06008.x.
  • Forbes, B. C., M. Macias-Fauria, and P. Zetterberg. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biology 16:1542–54. doi:10.1111/j.1365-2486.2009.02047.x.
  • Fraser, R. H., T. C. Lantz, I. Olthof, S. V. Kokelj, and R. A. Sims. 2014. Warming-induced shrub expansion and lichen decline in the Western Canadian Arctic. Ecosystems 17:1151–68. doi:10.1007/s10021-014-9783-3.
  • Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–77. doi:10.1111/gcb.2014.20.issue-4.
  • Gamm, C. M., P. F. Sullivan, A. Buchwal, R. J. Dial, A. B. Young, D. A. Watts, and E. Post. 2017. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. Journal of Ecology 106:640–54. doi:10.1111/1365-2745.12882.
  • Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences USA 102:13521–25. doi:10.1073/pnas.0506179102.
  • Green, C. A. 2018. Greening of recently deglaciated lands on the Kenai Peninsula. M.S. Thesis, Texas A & M University, College Station, TX, USA.
  • Hammond, T., and J. Yarie. 1996. Spatial prediction of climatic state factor regions in Alaska. Ecoscience 3:490–501. doi:10.1080/11956860.1996.11682368.
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister. 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset. International Journal of Climatology 34:623–42. doi:10.1002/joc.3711.
  • Hay, L. E., R. L. Wilby, and G. H. Leavesley. 2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States 1. JAWRA Journal of the American Water Resources Association 36:387–97. doi:10.1111/jawr.2000.36.issue-2.
  • Hayhoe, K. A. 2010. A standardized framework for evaluating the skill of regional climate downscaled techniques. Ph.D. Thesis, University of Illinois, Urbana, IL, USA.
  • Hinzman, L. D., N. D. Bettez, W. R. Bolton, F. S. Chapin III, M. B. Dyurgerov, C. L. Fasti, B. Griffith, R. D. Hollister, A. Hope, H. P. Huntington, et al. 2005. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72:251–98. doi:10.1007/s10584-005-5352-2.
  • Hobbie, J. E., G. R. Shaver, E. B. Rastetter, J. E. Cherry, S. J. Goetz, K. C. Guay, W. A. Gould, and G. W. Kling. 2017. Ecosystem responses to climate change at a Low Arctic and a High Arctic long-term research site. Ambio 46:S160–S173. doi:10.1007/s13280-016-0870-x.
  • Hobbie, S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66:503–22. doi:10.2307/2963492.
  • Hudson, J. M. G., and G. H. R. Henry. 2010. High Arctic plant community resists 15 years of experimental warming. Journal of Ecology 98:1035–41. doi:10.1111/j.1365-2745.2010.01690.x.
  • IPCC (Intergovernmental Panel on Climate Change). 2013. Summary for policymakers. In Climate change 2013: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge and New York: Cambridge University Press.
  • Jia, G., H. E. Epstein, and D. A. Walker. 2003. Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30:2067. doi:10.1029/2003GL018268.
  • Jia, G. J., H. E. Epstein, and D. A. Walker. 2004. Controls over intra-seasonal dynamics of AVHRR NDVI for the Arctic tundra in northern Alaska. International Journal of Remote Sensing 25:1547–64. doi:10.1080/0143116021000023925.
  • Juday, G. P., and C. Alix. 2012. Consistent negative temperature sensitivity and positive influence of precipitation on growth of floodplain Picea glauca in Interior Alaska. Canadian Journal of Forest Research 42 (3):561–73. doi:10.1139/x2012-008.
  • Juday, G. P., C. Alix, and T. A. Grant III. 2015. Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift. Forest Ecology & Management 350:46–61. doi:10.1016/j.foreco.2015.04.016.
  • Karl, T. R., A. Arguez, B. Haung, J. H. Lawrimore, J. R. McMahon, M. J. Menne, T. C. Peterson, R. S. Vose, and H. M. Zhang. 2015. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–72. doi:10.1126/science.aaa5632.
  • Kremers, K. S., R. D. Hollister, and S. F. Oberbauer. 2015. Diminished response of arctic plants to warming over time. PLoS ONE 10:e0116586. doi:10.1371/journal.pone.0116586.
  • Li, B., M. Heijmans, F. Berendse, D. Blok, T. Maximov, and U. Sass-Klaassen. 2016. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biology 39:1245–55. doi:10.1007/s00300-015-1847-0.
  • Lloyd, A. H., P. A. Duffy, and D. H. Mann. 2013. Nonlinear responses of white spruce growth to climate variability in interior Alaska. Canadian Journal of Forest Research 43:331–43. doi:10.1139/cjfr-2012-0372.
  • Marshall, S. J., M. J. Sharp, D. O. Burgess, and F. S. Anslow. 2007. Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: Implications for regional downscaling of temperature. International Journal of Climatology 27:385–98. doi:10.1002/(ISSN)1097-0088.
  • May, J., N. Healey, H. Ahrends, R. Hollister, C. Tweedie, J. Welker, W. Gould, and S. Oberbauer. 2017. Short-term impacts of the air temperature on greening and senescence in Alaskan arctic plant tundra habitats. Remote Sensing 9:1338. doi:10.3390/rs9121338.
  • Melillo, J. M., T. C. Richmond, and G. W. Yohe Eds. 2014. Climate change impacts in the United States: The third national climate assessment. U.S. Global Change Research Program, 841. doi:10.7930/J0Z31WJ2
  • Miller, A. E., T. L. Wilson, R. L. Sherriff, and J. Walton. 2017. Warming drives a front of white spruce establishment near western treeline, Alaska. Global Change Biology 23:5509–22. doi:10.1111/gcb.13814.
  • Myers-Smith, I. H., B. S. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Hik, M. Macias-Fauria, U. Sass-Klaassen, E. Lévesque, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6 (2011):045509. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., and D. S. Hik. 2017. Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106:547–60. doi:10.1111/1365-2745.12817.
  • Myers-Smith, I. H., S. C. Elmendorf, P. S. A. Beck, M. Wilmking, M. Hallinger, D. Blok, K. D. Tape, S. A. Rayback, M. Macias-Fauria, B. C. Forbes, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5:887–91.
  • Naito, A. T., and D. M. Cairns. 2015. Patterns of shrub expansion in Alaskan arctic river corridors suggest phase transition. Ecology and Evolution 5:87–101. doi:10.1002/ece3.1341.
  • Pattison, R. R., J. C. Jorgenson, M. K. Raynolds, and J. M. Welker. 2015. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 18:707–19. doi:10.1007/s10021-015-9858-9.
  • Phoenix, G., and J. W. Bjerke. 2016. Arctic browning: Extreme events and trends reversing arctic greening. Global Change Biology 22:2960–62. doi:10.1111/gcb.13261.
  • Post, E., U. S. Bhatt, C. M. Bitz, J. F. Brodie, T. L. Fulton, M. Hebblewhite, and D. A. Walker. 2013. Ecological consequences of sea ice decline. Science 341:519–24. doi:10.1126/science.1235225.
  • Radville, L., E. Post, and D. M. Eissenstat. 2018. On the sensitivity of root and leaf phenology to warming in the Arctic. Arctic, Antarctic, and Alpine Research 50 (1):S100020. doi:10.1080/15230430.2017.1414457.
  • Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker. 2012. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters 3:403–11. doi:10.1080/01431161.2011.609188.
  • Raynolds, M. K., J. C. Comiso, D. A. Walker, and D. Verbyla. 2008. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment 112:1884–94. doi:10.1016/j.rse.2007.09.008.
  • Sadoti, G., S. A. McAfee, C. A. Roland, E. F. Nicklen, and P. J. Sousanes. 2018. Modelling high-latitude summer temperature patterns using physiographic variables. International Journal of Climatology 38:4033–42. doi:10.1002/joc.5538.
  • Screen, J. A., and I. Simmonds. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–37. (29 April 2010). doi:10.1038/nature09051.
  • Segal, R. A., T. C. Lantz, and S. V. Kokelj. 2016. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environmental Research Letters 11:034025. doi:10.1088/1748-9326/11/3/034025.
  • Selkowitz, D. J., and S. V. Stehman. 2011. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. Remote Sensing of Environment 115:1401–07. doi:10.1016/j.rse.2011.01.020.
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland. 2009. The emergence of surface-based Arctic amplification. Cryosphere 3:11–19. doi:10.5194/tc-3-11-2009.
  • Serreze, M. C., and R. G. Barry. 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change 77:85–96. doi:10.1016/j.gloplacha.2011.03.004.
  • Sherriff, H. I., A. E. Miller, K. Muth, M. Schriver, and R. Batzel. 2017. Spruce growth responses to warming vary by ecoregion and ecosystem type near the forest-tundra boundary in south-west Alaska. Journal of Biogeography 44:1457–68. doi:10.1111/jbi.2017.44.issue-7.
  • Showstack, R. 2015. Arctic report card highlights profound regional changes. Eos 6. doi:10.1029/2015EO041933.
  • Simpson, J. J., G. L. Hufford, C. Daly, J. S. Berg, and M. D. Fleming. 2005. Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods. Arctic 58:137–61.
  • SNAP (Scenario Networks for Alaska and Arctic Planning, University of Alaska). 2016. https://www.snap.uaf.edu/methods/downscaling
  • Stafford, J. M., G. Wendler, and J. Curtis. 2000. Temperature and precipitation of Alaska: 50 year trend analysis. Theoretical & Applied Climatology 67:33–44. doi:10.1007/s007040070014.
  • Steltzer, H., and J. M. Welker. 2006. Modeling the effect of photosynthetic vegetation properties on the NDVI-LAI relationship. Ecology 87:2765–72. doi:10.1890/0012-9658(2006)87[2765:MTEOPV]2.0.CO;2.
  • Sturm, M., J. Schimel, G. Michaelson, J. M. Welker, and S. F. Oberbauer. 2005. Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55:17–26. doi:10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2.
  • Swanson, D. K. 2015. Environmental limits of tall shrubs in Alaska’s Arctic National Parks. PLoS One 10 (9):e0138387. doi:10.1371/journal.pone.0138387.
  • Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Global Change Biology 12:686–702. doi:10.1111/gcb.2006.12.issue-4.
  • Tape, K. D., D. Verbyla, and J. M. Welker. 2011. Twentieth century erosion in Arctic Alaska foothills: The influence of shrubs, runoff, and permafrost. Journal of Geophysical Research 116:G04024. doi:10.1029/2011JG001795.
  • Tremblay, B., E. Levesque, and S. Boudreau. 2012. Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik. Environmental Research Letters 7 (3):035501. doi:10.1088/1748-9326/7/3/035501.
  • Verbyla, D. 2008. The greening and browning of Alaska based on 1982–2003 satellite data. Global Ecology & Biogeography 17:547–55. doi:10.1111/j.1466-8238.2008.00396.x.
  • Verbyla, D. 2015. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environmental Research Letters 10:125016. doi:10.1088/1748-9326/10/12/125016.
  • Vose, R. S., M. Squires, D. Arndt, I. Durre, C. Fenimore, and K. Gleason. 2017. Deriving historical temperature and precipitation time series for Alaska climate divisions via climatologically aided interpolation. Journal of Service Climatology 10 (1). https://www.stateclimate.org/sites/default/files/upload/pdf/journal-articles/2017-Ross-etal.pdf.
  • Walker, D. A., H. E. Epstein, G. J. Jia, A. Balser, C. Copass, E. J. Edwards, W. A. Gould, J. Hollingsworth, J. Knudson, H. A. Maier, and A. Moody. 2003. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research 108 (D2):8169. doi:10.1029/2001JD000986.
  • Walker, D. A., H. E. Epstein, M. K. Raynolds, P. Kuss, M. A. Kopecky, G. V. Frost, and G. V. Matyshak. 2012. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects. Environmental Research Letters 7 (015504):17. doi:10.1088/1748-9326/7/1/015504.
  • Walker, X., and J. F. Johnstone. 2014. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environmental Research Letters 9:064016. doi:10.1088/1748-9326/9/6/064016.
  • Walker, X., M. C. Mack, and J. F. Johnstone. 2015. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests. Global Change Biology 21:3102–13. doi:10.1111/gcb.12893.
  • Walsh, J. E., P. A. Bieniek, B. Brettschneider, E. S. Euskirchen, R. Lader, and R. L. Thoman. 2017. The exceptionally warm winter of 2015–16 in Alaska: Attribution and anticipation. Journal of Climate 30:2069–88. doi:10.1175/JCLI-D-16-0473.1.
  • Weijers, S., R. Pape, J. Loffler, and I. H. Myers-Smith. 2018. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns. Environmental Research Letters 13 (3):0340050. doi:10.1088/1748-9326/aaa5b8.
  • Wendler, G., B. Moore, and K. Galloway. 2014. Strong temperature increase and shrinking sea ice in arctic Alaska. The Open Atmospheric Science Journal 8:7–15. doi:10.2174/1874282301408010007.
  • Wendler, G., and M. Suhlski. 2009. A century of climate change for Fairbanks, Alaska. Arctic 62:295–300. doi:10.14430/arctic149.
  • Wilmking, M., G. P. Juday, V. A. Barber, and H. S. J. Zald. 2004. Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biology 10:1724–36. doi:10.1111/gcb.2004.10.issue-10.
  • Wilson, S. D., and C. Nilsson. 2009. Arctic alpine vegetation change over 20 years. Global Change Biology 15:1676–84. doi:10.1111/gcb.2009.15.issue-7.