1,530
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Soil organic carbon predictions in Subarctic Greenland by visible–near infrared spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 490-505 | Received 03 Jan 2019, Accepted 04 Sep 2019, Published online: 07 Nov 2019

References

  • Banerjee, S., A. Bedard-Haughn, B. C. Si, and S. D. Siciliano. 2011. Soil spatial dependence in three Arctic ecosystems. Soil Science Society of America Journal 75 (2):591–94. doi:10.2136/sssaj2010.0220.
  • Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47 (2):151–63. doi:10.1111/j.1365-2389.1996.tb01386.x.
  • Bellon-Maurel, V., and A. McBratney. 2011. Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – critical review and research perspectives. Soil Biology and Biochemistry 43 (7):1398–410. doi:10.1016/j.soilbio.2011.02.019.
  • Ben-Dor, E., Y. Inbar, and Y. Chen. 1997. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment 61 (1):1–15. doi:10.1016/S0034-4257(96)00120-4.
  • Bokobza, L. 1998. Near infrared spectroscopy. Journal of Near Infrared Spectroscopy 6 (1):3–17. doi:10.1255/jnirs.116.
  • Burnham, J. H., and R. S. Sletten. 2010. Spatial distribution of soil organic carbon in northwest Greenland and underestimates of high Arctic carbon stores. Global Biogeochemical Cycles 24 (3). doi: 10.1029/2009GB003660.
  • Campeau, A. B., P. M. Lafleur, and E. R. Humphreys. 2014. Landscape-scale variability in soil organic carbon storage in the central Canadian Arctic. Canadian Journal of Soil Science 94 (4):477–88. doi:10.4141/cjss-2014-018.
  • Cappelen, J. 2011. DMI monthly climate data collection 1768–2010, Denmark, The Faroe Islands and Greenland. Technical 11–05, Danish Meteorological Institute, Copenhagen.
  • Chang, C.-W., and D. A. Laird. 2002. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science 167 (2):110–16. doi:10.1097/00010694-200202000-00003.
  • Clark, R. N., T. V. V. King, M. Klejwa, G. A. Swayze, and N. Vergo. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth 95 (B8):12653–80. doi:10.1029/JB095iB08p12653.
  • Daniel, K. W., N. K. Tripathi, and K. Honda. 2003. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Soil Research 41 (1):47–59. doi:10.1071/sr02027.
  • Fredskild, B. 1992. Erosion and vegetational changes in South Greenland caused by agriculture. Geografisk Tidsskrift-Danish Journal of Geography 92 (1):14–21. doi:10.1080/00167223.1992.10649310.
  • Galvao, L. S., and I. Vitorello. 1998. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. International Journal of Remote Sensing 19 (10):1969–79. doi:10.1080/014311698215090.
  • Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: A tutorial. Analytica Chimica Acta 185:1–17. doi:10.1016/0003-2670(86)80028-9.
  • Gogé, F., R. Joffre, C. Jolivet, I. Ross, and L. Ranjard. 2012. Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database. Chemometrics and Intelligent Laboratory Systems 110 (1):168–76. doi:10.1016/j.chemolab.2011.11.003.
  • Guerrero, C., R. Zornoza, I. Gómez, and J. Mataix-Beneyto. 2010. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy. Geoderma, Diffuse reflectance spectroscopy in soil science and land resource assessment 158 (1):66–77. doi:10.1016/j.geoderma.2009.12.021.
  • Guy, A. L., S. D. Siciliano, and E. G. Lamb. 2015. Spiking regional Vis-NIR calibration models with local samples to predict soil organic carbon in two High Arctic polar deserts using a Vis-NIR probe. Canadian Journal of Soil Science 95 (3):237–49. doi:10.4141/cjss-2015-004.
  • Hoffmann, U., T. Hoffmann, E. A. Johnson, and N. J. Kuhn. 2014. Assessment of variability and uncertainty of soil organic carbon in a mountainous boreal forest (Canadian Rocky Mountains, Alberta). CATENA 113:107–21. doi:10.1016/j.catena.2013.09.009.
  • Hoffmann, U., T. Hoffmann, G. Jurasinski, S. Glatzel, and N. J. Kuhn. 2014. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 232–234:270–83. doi:10.1016/j.geoderma.2014.04.038.
  • Hugelius, G., P. Kuhry, C. Tarnocai, and T. Virtanen. 2010. Soil organic carbon pools in a periglacial landscape: A case study from the central Canadian Arctic. Permafrost and Periglacial Processes 21 (1):16–29. doi:10.1002/ppp.677.
  • Hunt, G. 1977. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42 (3):501–13. doi:10.1190/1.1440721.
  • IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: IPCC, 151 pp.
  • Jacobsen, N. K. 1987. Studies on soils and potential for soil erosion in the sheep farming area of South Greenland. Arctic and Alpine Research 19 (4):498–507. doi:10.1080/00040851.1987.12002632.
  • Jacobsen, N. K., and B. H. Jakobsen. 1986. C14 datering af en fossil overfladehorisont ved Igaliku Kujalleq, Sydgrønland, set i relation til nordboernes landnam. Geografisk Tidsskrift-Danish Journal of Geography 86 (1):74–77. doi:10.1080/00167223.1986.10649230.
  • Jakobsen, B. H. 1989. Evidence for translocations into the B Horizon of a Subarctic Podzol in Greenland. Geoderma 45 (1):3–17. doi:10.1016/0016-7061(89)90053-0.
  • Jakobsen, B. H. 1991a. Multiple processes in the formation of subarctic Podzols in Greenland. Soil Science 125 (6):414–26. doi:10.1097/00010694-199112000-00003.
  • Jakobsen, B. H. 1991b. Soil resources and soil erosion in the Norse settlement area of Østerbygden in Southern Greenland. Acta Borealia 8 (1):56–68. doi:10.1080/08003839108580399.
  • Kennard, R. W., and L. A. Stone. 1969. Computer aided design of experiments. Technometrics 11 (1):137–48. doi:10.1080/00401706.1969.10490666.
  • Kuhry, P., G. G. Mazhitova, P.-A. Forest, S. V. Deneva, T. Virtanen, and S. Kultti. 2002. Upscaling soil organic carbon estimates for the Usa Basin (Northeast European Russia) using GIS-based landcover and soil classification schemes. Geografisk Tidsskrift-Danish Journal of Geography 102 (1):11–25. doi:10.1080/00167223.2002.10649462.
  • Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677):1623–27. doi:10.1126/science.1097396.
  • Malley, D. F., P. D. Martin, and E. Ben-Dor. 2004. Application in analysis of soils. Near-Infrared Spectroscopy in Agriculture 729–84. doi:10.2134/agronmonogr44.c26.
  • Massa, C., V. Bichet, É. Gauthier, B. B. Perren, O. Mathieu, C. Petit, F. Monna, J. Giraudeau, R. Losno, and H. Richard. 2012. A 2500 year record of natural and anthropogenic soil erosion in South Greenland. Quaternary Science Reviews 32:119–30. doi:10.1016/j.quascirev.2011.11.014.
  • McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet. 2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs 79 (4):523–55. doi:10.1890/08-2025.1.
  • Nelson, D. W., and L. E. Sommers. 1996. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis. Part 3 - Chemical methods, SSSA Book Series No. 5, eds. D. L. Sparks et al., 961–1010. Madison, WI: SSSA and ASA.
  • O’Rourke, S. M., and N. M. Holden. 2011. Optical sensing and chemometric analysis of soil organic carbon – A cost effective alternative to conventional laboratory methods? Soil Use and Management 27 (2):143–55. doi:10.1111/j.1475-2743.2011.00337.x.
  • Palmtag, J., G. Hugelius, N. Lashchinskiy, M. P. Tamstorf, A. Richter, B. Elberling, and P. Kuhry. 2015. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arctic, Antarctic, and Alpine Research 47 (1):71–88. doi:10.1657/AAAR0014-027.
  • Peng, Y., X. Xiong, K. Adhikari, M. Knadel, S. Grunwald, and M. H. Greve. 2015. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra. PLoS One 10 (11):e0142295. doi:10.1371/journal.pone.0142295.
  • Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger. 1982. Soil carbon pools and world life zones. Nature 298 (5870):156–59. doi:10.1038/298156a0.
  • Rinnan, R., and Å. Rinnan. 2007. Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of arctic soil. Soil Biology and Biochemistry 39 (7):1664–73. doi:10.1016/j.soilbio.2007.01.022.
  • Sankey, J. B., D. J. Brown, M. L. Bernard, and R. L. Lawrence. 2008. Comparing  local  vs.  global  visible  and near-Infrared (VisNIR) diffuse reflectance spectroscopy (DRS) calibrations for the prediction of soil clay, organic C and inorganic C. Geoderma 148 (2):149–58. doi:10.1016/j.geoderma.2008.09.019.
  • Savitzky, A., and J. E. M. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. ACS Publications. Analytical Chemistry 36 (8):1627–38. doi:10.1021/ac60214a047.
  • Scharlemann, J. P. W., E. V. J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1):81–91. doi:10.4155/cmt.13.77.
  • Schumacher, B. 2002. Methods for determination of total  organic carbon (TOC) in soils and sediments. Las Vegas, NV: US EPA, Environmental Sciences Division National Exposure Research Laboratory, Office of Research and Development.
  • Serreze, M. C., and J. A. Francis. 2006. The Arctic amplification debate. Climatic Change 76 (3):241–64. doi:10.1007/s10584-005-9017-y.
  • Shepherd, K. D., and M. G. Walsh. 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal 66 (3):988–98. doi:10.2136/sssaj2002.9880.
  • Sherman, D. M., and T. D. Waite. 1985. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist 70 (11–12):8.
  • Sjöström, M., S. Wold, W. Lindberg, J.-Å. Persson, and H. Martens. 1983. A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Analytica Chimica Acta 150:61–70. doi:10.1016/S0003-2670(00)85460-4.
  • Sørensen, H., and T. Andersen. 2006. Geological guide South Greenland: The Narsarsuaq-Narsaq-Qaqortoq region. Copenhagen: GEUS, Geological Survey of Denmark and Greenland.
  • Sørensen, L. K., and S. Dalsgaard. 2005. Determination of clay and other soil properties by near infrared spectroscopy. Soil Science Society of America Journal 69 (1):159. doi:10.2136/sssaj2005.0159.
  • Soriano-Disla, J. M., L. J. Janik, R. A. V. Rossel, L. M. Macdonald, and M. J. McLaughlin. 2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied Spectroscopy Reviews 49 (2):139–86. doi:10.1080/05704928.2013.811081.
  • Stenberg, B., R. A. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind. 2010. Visible and near infrared spectroscopy in Soil science. In Advances in agronomy, ed. D. L. Sparks, Vol. 107, 163–215. Burlington: Academic Press. doi:10.1016/S0065-2113(10)07005-7.
  • Stevens, A., M. Nocita, G. Tóth, L. Montanarella, and B. Wesemael. 2013. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS One 8 (6):e66409. doi:10.1371/journal.pone.0066409.
  • Summers, D., M. Lewis, B. Ostendorf, and D. Chittleborough. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, Spatial Information and Indicators for Sustainable Management of Natural Resources 11 (1):123–31. doi:10.1016/j.ecolind.2009.05.001.
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23 (2):n/a-n/a. doi:10.1029/2008GB003327.
  • Viscarra Rossel, R. A., D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131 (1):59–75. doi:10.1016/j.geoderma.2005.03.007.
  • Vohland, M., J. Besold, J. Hill, and H.-C. Fründ. 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 166 (1):198–205. doi:10.1016/j.geoderma.2011.08.001.
  • Volkan Bilgili, A., H. M. van Es, F. Akbas, A. Durak, and W. D. Hively. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Journal of Arid Environments 74 (2):229–38. doi:10.1016/j.jaridenv.2009.08.011.
  • Walker, D. A., H. E. Epstein, W. A. Gould, A. M. Kelley, A. N. Kade, J. A. Knudson, W. B. Krantz, G. Michaelson, R. A. Peterson, C.-L. Ping, et al. 2004. Frost-boil ecosystems: Complex interactions between landforms, soils, vegetation and climate. Permafrost and Periglacial Processes 15 (2):171–88. doi:10.1002/ppp.487.