10,689
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Diurnal and seasonal variations in photosynthetic rates of dwarf pine Pinus pumila at the treeline in central Japan

& ORCID Icon
Pages 1-12 | Received 26 Jun 2021, Accepted 22 Dec 2021, Published online: 26 Jan 2022

References

  • Ameglio, T., J. Morizet, P. Cruiziat, and M. Martignac. 1990. The effects of root temperature on water flux, potential and root resistance in sunflower. Agronomie 10:331‒340. doi:10.1051/agro:19900407.
  • Babalola, O., L. Boersma, and C. T. Youngberg. 1968. Photosynthesis and transpiration of Monterey pine seedlings as a function of soil water suction and soil temperature. Plant Physiology 43:515‒521. doi:10.1104/pp.43.4.515.
  • Bellasio, C., and G. D. Farquhar. 2019. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: Gains, losses and metabolite fluxes. New Phytologist 223:150‒166. doi:10.1111/nph.15787.
  • Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: A practical information theoretic approach. New York, NY, USA: Springer.
  • Carvajal, M., D. T. Cooke, and D. T. Clarkson. 1996. Plasma membrane fluidity and hydraulic conductance in wheat roots: Interactions between root temperature and nitrate or phosphate deprivation. Plant, Cell and Environment 19:1110‒1114. doi:10.1111/j.1365-3040.1996.tb00219.x.
  • Cochard, H., R. Martin, P. Gross, and M. B. Bogeat-Triboulot. 2000. Temperature effects on hydraulic conductance and water relations of Quercus robur L. Journal of Experimental Botany 51:1255‒1259. doi:10.1093/jxb/51.348.1255.
  • Craine, J. M., J. B. Nippert, E. G. Towne, S. Tucker, S. W. Kembel, A. Skibbe, and K. K. McLauchlan. 2011. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165:1109‒1117. doi:10.1007/s00442-011-1938-8.
  • DeLucia, E. H., T. A. Day, and G. Öquist. 1991. The potential for photoinhibition of Pinus sylvestris L. seedlings exposed to high light and low soil temperature. Journal of Experimental Botany 42:611‒617. doi:10.1093/jxb/42.5.611.
  • Farquhar, G. D., S. Von Caemmerer, and J. A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78‒90. doi:10.1007/BF00386231.
  • Flanagan, L. B., and K. H. Syed. 2011. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Global Change Biology 17:2271‒2287. doi:10.1111/j.1365-2486.2010.02378.x.
  • Foster, J. R., and W. K. Smith. 1991. Stomatal conductance patterns and environment in high elevation phreatophytes of Wyoming. Canadian Journal of Botany 69:647‒655. doi:10.1139/b91-087.
  • Francey, R. J., and G. D. Farquhar. 1982. An explanation of 13C/12C variations in tree rings. Nature 297:28‒31. doi:10.1038/297028a0.
  • Ganjurjav, H., Q. Gao, W. Zhang, Y. Liang, Y. Li, X. Cao, and L. Danjiu. 2015. Effects of warming on CO2 fluxes in an alpine meadow ecosystem on the central Qinghai–Tibetan Plateau. PLoS One 10:e0132044. doi:10.1371/journal.pone.0132044.
  • Granier, A., and N. Bréda. 1996. Modelling canopy conductance and stand transpiration of an oak forest from sap flow measurements. Annales des Sciences Forestières 53:537‒546. doi:10.1051/forest:19960233.
  • Grossiord, C., T. N. Buckley, L. A. Cernusak, K. A. Novick, B. Poulter, R. T. W. Siegwolf, J. S. Sperry, and N. G. McDowell. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226:1550‒1566. doi:10.1111/nph.16485.
  • Gunderson, C. A., K. H. O’Hara, C. M. Campion, A. V. Walker, and N. T. Edwards. 2010. Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Global Change Biology 16:2272‒2286.
  • Howell, T. A., and D. A. Dusek. 1995. Comparison of vapor-pressure-deficit calculation methods‒southern high plains. Journal of Irrigation Drainage and Engineering 121:191‒198. doi:10.1061/(ASCE)0733-9437(1995)121:2(191).
  • Hu, Y., L. Jiang, S. Wang, Z. Zhang, C. Luo, X. Bao, and S. Cui. 2016. The temperature sensitivity of ecosystem respiration to climate change in an alpine meadow on the Tibet plateau: A reciprocal translocation experiment. Agricultural and Forest Meteorology 216:93‒104. doi:10.1016/j.agrformet.2015.10.002.
  • Intergovernmental Panel on Climate Change. 2013. Climate change 2013: The physical science basis. In Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 1585 pp.
  • Ishida, A., T. Nakano, S. Sekikawa, E. Maruta, and T. Masuzawa. 2001. Diurnal changes in needle gas exchange in alpine Pinus pumila during snow-melting and summer seasons. Ecological Research 16:107‒116. doi:10.1046/j.1440-1703.2001.00376.x.
  • Jørgensen, R. H., M. Hallinger, S. Ahlgrimm, J. Friemel, J. Kollmann, and H. Meilby. 2015. Growth response to climatic change over 120 years for Alnus viridis and Salix glauca in West Greenland. Journal of Vegetation Science 26:155‒165. doi:10.1111/jvs.12224.
  • Kajimoto, T. 1990. Photosynthesis and respiration of Pinus pumila needles in relation to needle age and season. Ecological Research 5:333‒340. doi:10.1007/BF02347008.
  • Kajimoto, T. 1993. Shoot dynamics of Pinus pumila in relation to altitudinal and wind exposure gradients on the Kiso mountain range, central Japan. Tree Physiology 13:41‒53. doi:10.1093/treephys/13.1.41.
  • Kattge, J., and W. Knorr. 2007. Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell & Environment 30:1176‒1190. doi:10.1111/j.1365-3040.2007.01690.x.
  • Kellomäki, S., H. Strandman, T. Heinonen, A. Asikainen, A. Venäläinen, and H. Peltola. 2018. Temporal and spatial change in diameter growth of boreal Scots pine, Norway spruce, and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 9:118. doi:10.3390/f9030118.
  • King, G. M., F. Gugerli, P. Fonti, and D. C. Frank. 2013. Tree growth response along an elevational gradient: Climate or genetics? Oecologia 173:1587‒1600. doi:10.1007/s00442-013-2696-6.
  • Kominami, Y., K. Sasaki, and H. Ohno. 2019. User’s manual for The Agro-Meteorological Grid Square Data, NARO Ver.4. NARO, Tsukuba. 67pp (in Japanese).
  • Liu, Q., L. Xie, and F. Li. 2019. Dynamic simulation of the crown net photosynthetic rate for young Larix olgensis Henry trees. Forests 10:321. doi:10.3390/f10040321.
  • Major, J. E., and K. H. Johnsen. 1996. Family variation in photosynthesis of 22-year-old black spruce: A test of two models of physiological response to water stress. Canadian Journal of Forest Research 26:1922‒1933. doi:10.1139/x26-217.
  • Mellander, P.-E., K. Bishop, and T. Lundmark. 2004. The influence of soil temperature on transpiration: A plot scale manipulation in a young Scots pine stand. Forest Ecology and Management 195:15‒28. doi:10.1016/j.foreco.2004.02.051.
  • Miyajima, Y., T. Sato, and K. Takahashi. 2007. Altitudinal changes in vegetation of tree, herb and fern species on Mount Norikura, central Japan. Vegetation Science 24:29‒40.
  • Niu, S., Z. Li, J. Xia, Y. Han, M. Wu, and S. Wan. 2008. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Environmental and Experimental Botany 63:91‒101. doi:10.1016/j.envexpbot.2007.10.016.
  • Oberbauer, S. F., C. E. Tweedie, J. M. Welker, J. T. Fahnestock, G. H. Henry, P. J. Webber, and G. Starr. 2007. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs 77:221‒238.
  • Ohdo, T., and K. Takahashi. 2020. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB PLANTS 12:laa014. doi:10.1093/aobpla/plaa014.
  • Ohno, H., K. Sasaki, G. Ohara, and K. Nakazono. 2016. Development of grid square air temperature and precipitation data compiled from observed, forecasted, and climatic normal data. Climate in Biosphere 16:71–79. (in Japanese with English title). doi:10.2480/cib.J-16-028.
  • Okitsu, S., and K. Ito. 1984. The relation of forest limit to the WI 15 in mountains of Hokkaido. Japanese Journal of Ecology 34:341–46. (in Japanese with English summary).
  • Peri, P. L., D. J. Moot, D. L. McNeil, A. C. Varella, and R. J. Lucas. 2002. Modelling net photosynthetic rate of field-grown cocksfoot leaves under different nitrogen, water and temperature regimes. Grass and Forage Science 57:61‒71. doi:10.1046/j.1365-2494.2002.00302.x.
  • Pregitzer, K. S., J. S. King, A. J. Burton, and S. E. Brown. 2000. Responses of tree fine roots to temperature. New Phytologist 147:105‒115. doi:10.1046/j.1469-8137.2000.00689.x.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ (accessed on 1 October 2018).
  • Reich, P. B., K. M. Sendall, A. Stefanski, R. L. Rich, S. E. Hobbie, and R. A. Montgomery. 2018. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562:263‒267. doi:10.1038/s41586-018-0582-4.
  • Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62:365‒392. doi:10.2307/2937116.
  • Reyer, C., P. Lasch-Born, F. Suckow, M. Gutsch, A. Murawski, and T. Pilz. 2014. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science 71:211‒225. doi:10.1007/s13595-013-0306-8.
  • Sage, R. F., and D. S. Kubien. 2007. The temperature response of C3 and C4 Photosynthesis. Plant, Cell & Environment 30:1086‒1106. doi:10.1111/j.1365-3040.2007.01682.x.
  • Sánchez-Salguero, R., J. J. Camarero, E. Gutiérrez, F. G. Rouco, A. Gazol, G. Sangüesa-Barreda, L. Andreu-Hayles, J. C. Linares, and K. Seftigen. 2017. Assessing forest vulnerability to climate warming using a process-based model of tree growth: Bad prospects for rear-edges. Global Change Biology 23:2705‒2719. doi:10.1111/gcb.13541.
  • Sendall, K. M., P. B. Reich, C. Zhao, H. Jihua, X. Wei, A. Stefanski, K. Rice, R. L. Rich, and R. A. Montgomery. 2015. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology 21:1342‒1357. doi:10.1111/gcb.12781.
  • Sharkey, T. D., C. J. Bernacchi, G. D. Farquhar, and E. L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30:1035‒1040. doi:10.1111/j.1365-3040.2007.01710.x.
  • Slot, M., and K. Winter. 2017. Photosynthetic acclimation to warming in tropical forest tree seedlings. Journal of Experimental Botany 68:2275‒2284. doi:10.1093/jxb/erx071.
  • Suzuki, R., and K. Takahashi. 2020. Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii. Journal of Plant Ecology 13:460‒469. doi:10.1093/jpe/rtaa034.
  • Takahashi, K., and I. Okuhara. 2013. Forecasting the effects of global warming on radial growth of subalpine trees at the upper and lower distribution limits in central Japan. Climatic Change 117:273‒287. doi:10.1007/s10584-012-0547-9.
  • Takahashi, K., and S. Yoshida. 2009. How the scrub height of Pinus pumila decreases at the treeline. Ecological Research 24:847‒854. doi:10.1007/s11284-008-0558-1.
  • Takahashi, K., and Y. Miyajima. 2008. Variations in stomatal density, stomatal conductance and leaf water potential along an altitudinal gradient in central Japan. Phyton (Horn, Austria) 48:1‒12.
  • Takahashi, K., Y. Tokumitsu, and K. Yasue. 2005. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research 20:445–51. doi:10.1007/s11284-005-0060-y.
  • Takahashi, K. 2003. Diurnal variations in stomatal conductance of Betula ermanii and Pinus pumila at the timberline on Mt. Shogigashira, central Japan. Journal of Phytogeography and Taxonomy 51:159‒164.
  • Takahashi, K. 2006. Shoot growth chronology of alpine dwarf pine (Pinus pumila) in relation to shoot size and climatic conditions: A reassessment. Polar Bioscience 19:123‒132.
  • Weijers, S., F. Wagner-Cremer, U. Sass-Klaassen, R. Broekman, and J. Rozema. 2013. Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. The Holocene 23:721‒731. doi:10.1177/0959683612470178.
  • Wentz, K. F., J. C. Neff, and K. N. Suding. 2018. Leaf temperatures mediate alpine plant communities’ response to a simulated extended summer. Ecology and Evolution 9:1227–43. doi:10.1002/ece3.4816.
  • Wieser, G., W. Oberhuber, L. Walder, D. Spieler, and A. Gruber. 2010. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Annals of Forest Science 67:201‒201. doi:10.1051/forest/2009094.
  • Wu, L., H. Su, and J. H. Jiang. 2011. Regional simulations of deep convection and biomass burning over South America: 2. Biomass burning aerosol effects on clouds and precipitation. Journal of Geophysical Research: Atmospheres 116:D17209.
  • Zaka, S., E. Frak, B. Julier, F. Gastal, and G. Louarn. 2016. Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop. AoB PLANTS 8:lw035. doi:10.1093/aobpla/plw035.
  • Zhang, S. B., Z. K. Zhou, H. Hu, K. Xu, N. Yan, and S. Y. Li. 2005. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. Forest Ecology and Management 212:291‒301. doi:10.1016/j.foreco.2005.03.031.
  • Zhang, Y., Y. Bergeron, L. Gao, X. Zhao, X. Wang, and I. Drobyshev. 2014. Tree growth and regeneration dynamics at a mountain ecotone on Changbai Mountain, northeastern China: Which factors control species distributions? Écoscience 21:387‒404. doi:10.2980/21-(3-4)-3702.