10,952
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Slight change of glaciers in the Pamir over the period 2000–2017

, ORCID Icon, , &
Pages 13-24 | Received 11 Jul 2021, Accepted 07 Jan 2022, Published online: 22 Feb 2022

References

  • Bhambri, R., K. Hewitt, P. Kawishwar, and B. Pratap. 2017. Surge-type and surge-modified glaciers in the Karakoram. Scientific Reports 7 (1):15391. doi:10.1038/s41598-017-15473-8.
  • Bhattacharya, A., T. Bolch, K. Mukherjee, O. King, B. Menounos, V. Kapitsa, N. Neckel, W. Yang, and T. D. Yao. 2021. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nature Communications 12:4133. doi:10.1038/s41467-021-24180-y.
  • Brun, F., E. Berthier, P. Wagnon, A. Kääb, and D. Treichler. 2017. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience 10 (9):668–73. doi:10.1038/NGEO2999.
  • Chen, A. A., N. L. Wang, Z. Li, Y. W. Wu, W. Zhang, and Z. M. Guo. 2017. Region-wide glacier mass budgets for the Tanggula Mountains between ~1969 and ~2015 derived from remote sensing data. Arctic, Antarctic, and Alpine Research 49 (4):551–68. doi:10.1657/AAAR0016-065.
  • Dehecq, A., N. Gourmelen, A. S. Gardner, F. Brun, D. Goldberg, P. W. Nienow, E. Berthier, C. Vincent, P. Wagnon, and E. Trouve. 2019. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience 12 (1):22–27. doi:10.1038/s41561-018-0271-9.
  • Environment for Visualizing Images (ENVI). 2015. https://www.enviidl.com/.
  • Farinotti, D., W. W. Immerzeel, R. J. Kok, D. J. Quincey, and A. Dehecq. 2020. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nature Geoscience 13 (1):8–16. doi:10.1038/s41561-019-0513-5.
  • Gardelle, J., E. Berthier, and Y. Arnaud. 2012. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. Journal of Glaciology 58 (208):419–22. doi:10.3189/2012JoG11J175.
  • Gardelle, J., E. Berthier, Y. Arnaud, and A. Kääb. 2013. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere 7 (4):1263–86. doi:10.5194/tc-7-1263-2013.
  • Gardner, A. S., G. Moholdt, J. G. Cogley, B. Wouters, A. A. Arendt, J. Wahr, E. Berthier, R. Hock, W. T. Pfeffer, G. Kaser, et al. 2013. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340 (6134):852–57. doi:10.1126/science.1234532.
  • Goerlich, F., T. Bolch, and F. Paul. 2020. More dynamic than expected: An updated survey of surging glacier in the Pamir. Earth System Science Data 12:3161–76. doi:10.5194/essd-12-3161-2020.
  • Guo, W. Q., S. Y. Lin, J. L. Xu, L. Z. Wu, D. H. Shangguan, X. J. Yao, J. F. Wei, W. J. Bao, P. C. Yu, Q. Liu, et al. 2015. The second Chinese glacier inventory: Data, methods and results. Journal of Glaciology 61 (226):357–72. doi:10.3189/2015JoG14J227.
  • Herreid, S., and F. Pellicciotti. 2020. The state of rock debris covering Earth’s glaciers. Nature Geoscience 13 (9):621–27. doi:10.1038/s41561-020-0615-0.
  • Holzer, N., S. Vijay, T. D. Yao, B. Q. Xu, M. Buchroithner, and T. Bolch. 2015. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. The Cryosphere 9 (6):2071–88. doi:10.5194/tc-9-2071-2015.
  • Huss, M. 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7 (3):877–87. doi:10.5194/tc-7-877-2013.
  • Immerzeel, W. W., A. F. Lutz, M. Andrade, A. Bahl, H. Biemans, T. Bolch, S. Hyde, S. Brumby, B. J. Davies, A. C. Elmore, et al. 2020. Importance and vulnerability of the world’s water towers. Nature 577 (7790):364–69. doi:10.1038/s41586-019-1822-y.
  • Intergovernmental Panel on Climate Change. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/.
  • Jacob, T., J. Wahr, W. T. Pfeffer, and S. Swenson. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature 482 (7386):514–18. doi:10.1038/nature10847.
  • Ji, Q., T. B. Yang, J. Dong, and Y. He. 2018. Glacier variations in response to climate change in the eastern Nyainqentanglha range, Tibetan Plateau from 1999 to 2015. Arctic, Antarctic, and Alpine Research 50 (1):e1435844. doi:10.1080/15230430.2018.1435844.
  • Kääb, A., D. Treichler, C. Nuth, and E. Berthier. 2015. Brief communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya. The Cryosphere 9 (2):557–64. doi:10.5194/tc-9-557-2015.
  • Khromova, T. E., G. B. Osipova, D. G. Tsvetkov, M. B. Dyurgerov, and R. G. Barry. 2006. Changes in glacier extent in the eastern Pamir, Central Asia, determined from historical data and ASTER imagery. Remote Sensing of Environment 102 (1–2):24–32. doi:10.1016/j.rse.2006.01.019.
  • Kotlyakov, V. M., G. B. Osipova, and D. G. Tsvetkov. 2008. Monitoring surging glaciers of the Pamirs, Central Asia, from space. Annals of Glaciology 48 (1):125–34. doi:10.3189/172756408784700608.
  • Lin, H., G. Li, L. Cuo, A. Hooper, and Q. H. Ye. 2017. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000-2014. Scientific Reports 7:6712. doi:10.1038/s41598-017-07133-8.
  • Liu, S. Y., X. J. Yao, W. Q. Guo, J. L. Xu, D. H. Shangguan, J. F. Wei, W. J. Bao, and L. Z. Wu. 2015. The contemporary glaciers in China based on the second Chinese Glacier inventory. Acta Geographica Sinica 70 (1):3–16. (In Chinese). doi:10.11821/dlxb201501001.
  • Liu, J., X. J. Yao, S. Y. Liu, W. Q. Guo, and J. L. Xu. 2019. Glacier changes in the Gangdisê Mountains from 1970 to 2016. Acta Geographica Sinica 74 (7):1333–44. (In Chinese). doi:10.11821/dlxb201907005.
  • Luo, Y., X. L. Wang, S. L. Piao, L. Sun, P. Ciais, Y. Q. Zhang, C. K. Ma, R. Gan, and C. S. He. 2018. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir -North Karakoram. Scientific Reports 8:16470. doi:10.1038/s41598-018-34892-2.
  • Lv, M. Y., H. D. Guo, X. C. Lu, G. Liu, S. Y. Yan, Z. X. Ruan, Y. X. Ding, and D. J. Quincey. 2019. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. The Cryosphere 13 (1):219–36. doi:10.5194/tc-13-219-2019.
  • Molg, N., T. Bolch, P. Rastner, T. Strozzi, and F. Paul. 2018. A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: Distribution of debris cover and mapping challenges. Earth System Science Data 10 (4):1807–27. doi:10.5194/essd-2018-35.
  • Muzinska, A. 2015. Transport conditions of mountain-surging glaciers as recorded in the micromorphology of quartz grains (Medvezhiy Glacier, West Pamir). Geologos 21 (2):127–38.
  • Nuimura, T., A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, et al. 2015. The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. The Cryosphere 8 (3):849–64. doi:10.5194/tc-9-849-2015.
  • Nuth, C., and A. Kääb. 2011. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5 (1):271–90. doi:10.5194/tc-5-271-2011.
  • Rankl, M., S. Vijay, C. Kienholz, and M. Braun. 2014. Glacier changes in the Karakoram region mapped by multimission satellite imagery. The Cryosphere 8 (3):977–89. doi:10.5194/tc-7-4065-2013.
  • RGI Consortium. 2017. Randolph glacier inventory–a dataset of global glacier outlines: Version 6.0: Technical report. Global Land Ice Measurements from Space. Colorado, USA: Digital Media. doi:10.7265/N5-RGI-60. http://www.glims.org/RGI/randolph60.html
  • Sakai, A. 2018. GAMDAM glacier inventory for High Mountain Asia. Pangaea. doi:10.1594/PANGAEA.891423. https://doi.pangaea.de/10.1594/PANGAEA.891423
  • Sakai, A. 2019. Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia. The Cryosphere 13 (7):2043–49. doi:10.5194/tc-13-2043-2019.
  • Shean, D. E., S. Bhushan, P. Montesano, D. R. Rounce, A. Arendt, and B. Osmanoglu. 2020. A systematic, regional assessment of High Mountain Asia glacier mass balance. Frontiers in Earth Science 7:363. doi:10.3389/feart.2019.00363.
  • United States Geological Survey (USGS). 1972. Landsat Missions. https://earthexplorer.usgs.gov/
  • van Zyl, J. 2001. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronautica 48 (5–12):559–65. doi:10.1016/S0094-5765(01)00020-0. https://earthexplorer.usgs.gov/
  • Wang, Y. T., S. G. Hou, B. J. Huai, W. L. An, H. X. Pang, and Y. P. Liu. 2018. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. Journal of Glaciology 64 (246):624–36. doi:10.1017/jog.2018.53.
  • Yan, S. Y., Y. T. Zheng, Y. Li, F. K. Lang, and Z. Ruan. 2019. A spatio-temporal variation analysis of Fedchenko and Grumm-Grzhimaylo glacier motion pattern with an efficient pixel-tracking method on spaceborne SAR imagery. Environmental Earth Sciences 78:599. doi:10.1007/s12665-019-8610-8.
  • Yao, T. D., L. Thompson, W. Yang, W. S. Yu, Y. Gao, X. J. Guo, X. X. Yang, K. Q. Duan, H. B. Zhao, B. Q. Xu, et al. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2 (9):663–67. doi:10.1038/NCLIMATE1580.
  • Yao, T. D., G. J. Wu, B. Q. Xu, W. C. Wang, J. Gao, and B. S. An. 2019. Asia water tower change and its impacts. Bulletin of the Chinese Academy of Sciences 34 (11):1203–09. (In Chinese). doi:10.16418/j.1000-3045.2019.11.003.
  • Ye, Q. H., J. B. Zong, L. D. Tian, J. G. Cogley, C. Q. Song, and W. Q. Guo. 2017. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13. Journal of Glaciology 63 (238):273–87. doi:10.1017/jog.2016.137.
  • Zemp, M., H. Frey, I. Gartner-Roer, S. U. Nussbaumer, M. Hoelzle, F. Paul, W. Haeberli, F. Denzinger, A. P. Ahlstrom, B. Anderson, et al. 2015. Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61 (228):745–62. doi:10.3189/2015JoG15J017.
  • Zemp, M., M. Huss, E. Thibert, N. Eckert, R. McNabb, J. Huber, M. Barandun, H. Machguth, S. U. Nussbaumer, I. Gartner-Roer, et al. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568 (7752):382–86. doi:10.1038/s41586-019-1071-0.
  • Zhang, Q. B., S. C. Kang, and F. Chen. 2013. Glacier variations in the Fedchenko basin, Tajikistan, 1992–2006: Insights from remote-sensing images. Mountain Research and Development 34 (1):56–65. doi:10.1659/MRD-JOURNAL-D-12-00074.1.
  • Zhang, Y., and S. Y. Liu. 2017. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geographica Sinica 72 (9):1606–20. (In Chinese). doi:10.11821/dlxb201709006.
  • Zhang, Z., S. Y. Liu, Y. Zhang, J. F. Wei, Z. L. Jiang, and K. P. Wu. 2018. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data. Journal of Glaciology 64 (245):397–406. doi:10.1017/jog.2018.34.
  • Zhang, Z., J. L. Xu, S. Y. Liu, W. Q. Guo, J. F. Wei, and T. Feng. 2016. Glacier changes since the early 1960s, eastern Pamir, China. Journal of Mountain Science 13 (2):276–91. doi:10.1007/s11629-014-3172-4.
  • Zhou, Y. S., Z. W. Li, J. Li, R. Zhao, and X. L. Ding. 2018. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sensing of Environment 210:96–112. doi:10.1016/j.rse.2018.03.020.
  • Zhou, Y. S., Z. W. Li, J. Li, R. Zhao, and X. L. Ding. 2019. Geodetic glacier mass balance (1975-1999) in the central Pamir using the SRTM DEM and KH-9 imagery. Journal of Glaciology 65 (250):309–20. doi:10.1017/jog.2019.8.