10,288
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Hindcasts of passerine density in arctic and subarctic Alaska suggest noncomplementary responses to shrub expansion by tundra- and shrub-adapted species

ORCID Icon & ORCID Icon
Pages 25-39 | Received 19 Apr 2021, Accepted 17 Jan 2022, Published online: 28 Feb 2022

References

  • Bartsch, A., B. Widhalm, M. Leibman, K. Ermokhina, T. Kumpula, A. Skarin, E. J. Wilcox, B. M. Jones, G. V. Frost, A. Höfler, et al. 2020. Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment 237:111515. doi:10.1016/j.rse.2019.111515.
  • Batova, O. N. 2011. Selection of foraging tactics in leaf warblers (Phylloscopus). Biological Bulletin Reviews 38:259–65. doi:10.1134/S1062359011030022.
  • Berner, L. T., P. Jantz, K. D. Tape, and S. J. Goetz. 2018. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters 13 (3):035002. doi:10.1088/1748-9326/aaaa9a.
  • Blok, D., G. Schaepman-Strub, H. Bartholomeus, M. M. Heijmans, T. C. Maximov, and F. Berendse. 2011. The response of Arctic vegetation to the summer climate: Relation between shrub cover, NDVI, surface albedo and temperature. Environmental Research Letters 6:035502.
  • Boelman, N. T., L. Gough, J. C. Wingfield, S. Goetz, A. Asmus, H. E. Chmura, J. S. Krause, J. H. Perez, S. K. Sweet, K. C. Guay, et al. 2015. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan Arctic tundra. Global Change Biology. 21:1508–20. doi:10.1111/gcb.12761.
  • Boelman, N. T., J. D. Holbrook, H. E. Greaves, J. S. Krause, H. E. Chmura, T. S. Magney, J. H. Perez, J. U. H. Eitel, L. Gough, K. T. Vierling, et al. 2016. Airborne laser scanning and spectral remote sensing give a bird’s eye perspective on Arctic tundra breeding habitat at multiple spatial scales. Remote Sensing of Environment 184:337–49. doi:10.1016/j.rse.2016.07.012.
  • Boggs, K., A. Garibaldi, J. L. Stevens, and J. Grunblatt. 2001. Denali National Park and preserve landcover mapping project volume 2: Landcover classes and plant associations. Natural Resource Technical Report NPS/DENA/NRTR—2001/002. https://irma.nps.gov/DataStore/Reference/Profile/606696.
  • Brodie, J. F., C. A. Roland, S. E. Stehn, and E. Smirnova. 2019. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 100:02660. doi:10.1002/ecy.2660.
  • Brooks, S. P., and A. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7:434–55.
  • Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 2001. Introduction to distance sampling. Oxford: Oxford University Press.
  • Bunn, A. G., and S. J. Goetz. 2006. Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: The influence of seasonality, cover type, and vegetation density. Earth Interactions 10:1–19. doi:10.1175/EI190.1.
  • Christie, K. S., J. P. Bryant, L. Gough, V. T. Ravolainen, R. W. Ruess, and K. D. Tape. 2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: A synthesis. BioScience 65:1123–33.
  • Clegg, B. F., and F. S. Hu. 2010. An oxygen–isotope record of Holocene climate change in south–central Brooks Range, Alaska. Quaternary Science Reviews 29:928–39. doi:10.1016/j.quascirev.2009.12.009.
  • Denwood, M., and M. Plummer. 2016. Package ‘ runjags’. http://runjags.sourceforge.net.
  • Fraser, R. H., T. C. Lantz, I. Olthof, S. V. Kokelj, and R. A. Sims. 2014. Warming–induced shrub expansion and lichen decline in the Western Canadian Arctic. Ecosystems 17:1151–68. doi:10.1007/s10021-014-9783-3.
  • Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20:1264–77. doi:10.1111/gcb.12406.
  • Gelman, A. 2006. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis 1:515–34. doi:10.1214/06-BA117A.
  • Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Science USA 102:13521–25. doi:10.1073/pnas.0506179102.
  • Hedley, S. L., and S. T. Buckland. 2004. Spatial models for line transect sampling. Journal of Agricultural, Biological and Environmental Statistics 9:181–91. doi:10.1198/1085711043578.
  • Henden, J. A., N. G. Yoccoz, R. A. Ims, and K. Langeland. 2013. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra. PLoS One 8:e63312.
  • Higuera, P. E., L. B. Brubaker, P. M. Anderson, F. S. Hu, and T. A. Brown. 2009. Vegetation mediated the impacts of postglacial climate change on fire regimes in the south‐central Brooks Range, Alaska. Ecological Monographs 79:201–19. doi:10.1890/07-2019.1.
  • Hijmans, R. J., J. van Etten, J. Cheng, M Mattiuzzi, M. Sumner, J. A. Greenberg, O. P. Lamigueiro, A. Bevan, E. B. Racine, and A. Shortridge. 2015. Raster package in R.
  • Hitch, A. T., and P. L. Leberg. 2007. Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology 21:534–39. doi:10.1111/j.1523-1739.2006.00609.x.
  • Jia, G. J., H. E. Epstein, and D. A. Walker. 2003. Greening of Arctic Alaska, 1981–2001. Geophysical Research Letters 30:2067. doi:10.1029/2003GL018268.
  • Jia, G. J., H. E. Epstein, and D. A. Walker. 2006. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biology 12:42–55. doi:10.1111/j.1365-2486.2005.01079.x.
  • Jia, G. J., H. E. Epstein, and D. A. Walker. 2009. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring 11:2231–38. doi:10.1039/b911677j.
  • Joly, K., M. J. Cole, and R. R. Jandt. 2007. Diets of overwintering caribou, Rangifer tarandus, track decadal changes in Arctic tundra vegetation. Canadian Field-Naturalist 121:379–83. doi:10.22621/cfn.v121i4.509.
  • Jorgenson, M. T., M. S. Duffy, G. V. Frost, P. F. Miller, M. J. Macander, A. F. Wells, and E. R. Pullman. 2009. An ecological land survey and landcover map of the Arctic Network. NPS/ARCN/NRTR–2009/270, US Department of the Interior, National Park Service, Fort Collins, CO.
  • Kéry, M., and J. A. Royle. 2016. Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS. Volume 1: prelude and static models. London, UK: Academic Press.
  • Lenoir, J., J. C. Gégout, A. Guisan, Vittoz, P., T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, H. Pauli, W. Willner, and Svenning, J.C. 2010. Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33:295–303.
  • Link, W. A., and J. R. Sauer. 1997. Estimation of population trajectories from count data. Biometrics 53:488–97. doi:10.2307/2533952.
  • Maggini, R., A. Lehmann, M. Kéry, H. Schmid, M. Beniston, L. Jenni, and N. Zbinden. 2011. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecological Modelling 222:21–32. doi:10.1016/j.ecolmodel.2010.09.010.
  • Mizel, J. D., J. H. Schmidt, and M. S. Lindberg. 2018. Accommodating temporary emigration in spatial distance sampling models. Journal of Applied Ecology 55:1456–64. doi:10.1111/1365-2664.13053.
  • Mizel, J. D., J. H. Schmidt, and C. L. McIntyre. 2021. Climate and weather have differential effects in a high latitude passerine community. Oecologia 195:355–65. doi:10.1007/s00442-020-04847-x.
  • Mizel, J. D., J. H. Schmidt, C. L. McIntyre, and C. A. Roland. 2016. Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere 7:e01264. doi:10.1002/ecs2.1264.
  • Munger, C. A., D. A. Walker, H. A. Maier, T. D. Hamilton. 2008. Spatial analysis of glacial geology, surficial geomorphology, and vegetation in the Toolik Lake region: Relevance to past and future land–cover changes. In Proceedings of the Ninth International Conference on Permafrost Conference, eds. D. I. Kand, and K. M. Hinkel, 1255–60. University of Alaska Fairbanks, Fairbanks.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. Macias-Fauria, U. Sass-Klaassen, Lévesque, E., and S. Boudreau. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6:045509.
  • Oedekoven, C. S., S. T. Buckland, M. L. Mackenzie, K. O. Evans, and L. W. Burger Jr. 2013. Improving distance sampling: Accounting for covariates and non‐independency between sampled sites. Journal of Applied Ecology 50:786–93. doi:10.1111/1365-2664.12065.
  • Olofsson, J., L. Oksanen, T. Callaghan, P. E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate‐driven shrub expansion on the tundra. Global Change Biology 15:2681–93. doi:10.1111/j.1365-2486.2009.01935.x.
  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637–69. doi:10.1146/annurev.ecolsys.37.091305.110100.
  • Pattison, R. R., J. C. Jorgenson, M. K. Raynolds, and J. M. Welker. 2015. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 18:707–19. doi:10.1007/s10021-015-9858-9.
  • Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. http://www.r–project.org/conferences/DSC–2003/Drafts/Plummer.pdf.
  • Post, E., M. C. Forchhammer, M. S. Bret–Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, A. D. Fox, O. Gilg, D. S. Hik, T. T. Høye, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–58. doi:10.1126/science.1173113.
  • Pouliot, D., R. Latifovic, and I. Olthof. 2009. Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. International Journal of Remote Sensing 30:149–68.
  • PRISM Climate Group. 2020. PRISM climate data. Accessed August 4, 2020. http://prism.oregonstate.edu.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Riedel, S. M., H. E. Epstein, and D. A. Walker. 2005. Biotic controls over spectral reflectance of Arctic tundra vegetation. International Journal of Remote Sensing 26:2391–405. doi:10.1080/01431160512331337754.
  • Roy, D. P., V. Kovalskyy, H. K. Zhang, E. F. Vermote, L. Yan, S. S. Kumar, and A. Egorov. 2016. Characterization of Landsat–7 to Landsat–8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment 185:57–70. doi:10.1016/j.rse.2015.12.024.
  • Sauer, B., and J. Dwyer. 2018. U.S. Landsat Analysis Ready Data (ARD) Data Format Control Book (DFCB) (LSDA–1873 version 4.0). US Geological Survey Earth Resources Observation and Science (EROS) Center. https://www.usgs.gov/media/files/landsat–analysis–ready–data–ard–data–format–control–book–dfcb.
  • Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411:546–47. doi:10.1038/35079180.
  • Sturm, M., J. Schimel, G. Michaelson, J. M. Welker, S. F. Oberbauer, G. E. Liston, J. Fahnestock, and V. E. Romanovsky. 2005. Winter biological processes could help convert Arctic tundra to shrubland. Bioscience. 55:17–26. doi:10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2.
  • Swanson, D. K. 2013. Three decades of landscape change in Alaska’s Arctic national parks: Analysis of aerial photographs, c. 1980–2010. Natural Resource Technical Report NPS/ARCN/NRTR—2013/668, National Park Service, Fort Collins, CO. https://irma.nps.gov/App/Reference/Profile/2192701.
  • Swanson, D. K. 2015. Environmental limits of tall shrubs in Alaska’s Arctic national parks. PLoS One 10:e0138387.
  • Swanson, D. K., and P. N. Neitlich. 2016. Terrestrial vegetation monitoring protocol for the Arctic Alaska network: Establishment, sampling, and analysis of permanent monitoring plots. Natural Resource Report NPS/ARCN/NRR—2016/1214, National Park Service. https://irma.nps.gov/DataStore/Reference/Profile/2229705.
  • Sweet, S. K., A. Asmus, M. E. Rich, J. Wingfield, L. Gough, and N. T. Boelman. 2015. NDVI as a predictor of canopy arthropod biomass in the Alaskan Arctic tundra. Ecological Applications 25 (3):779–90. doi:10.1890/14-0632.1.
  • Tape, K. D., K. Christie, G. Carroll, and J. A. O’Donnell. 2016a. Novel wildlife in the Arctic: The influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Global Change Biology 22:208–19.
  • Tape, K. D., D. D. Gustine, R. W. Ruess, L. G. Adams, and J. A. Clark. 2016b. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS One 11:e0152636. doi:10.1371/journal.pone.0152636.
  • Tape, K. D., M. Hallinger, J. M. Welker, and R. W. Ruess. 2012. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15:711–24. doi:10.1007/s10021-012-9540-4.
  • Tape, K. D., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology 12:686–702. doi:10.1111/j.1365-2486.2006.01128.x.
  • Thompson, S. J., C. M. Handel, R. M. Richardson, and L. B. McNew. 2016. When winners become losers: Predicted nonlinear responses of Arctic birds to increasing woody vegetation. PLoS One 11: e0164755. doi:10.1371/journal.pone.0164755
  • Tingley, M. W., M. S. Koo, C. Moritz, A. C. Rush, and S. R. Beissinger. 2012. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology 18:3279–90. doi:10.1111/j.1365-2486.2012.02784.x.
  • Tucker, C. J., and P. J. Sellers. 1986. Satellite remote sensing of primary production. International Journal of Remote Sensing 7:1395–416. doi:10.1080/01431168608948944.
  • U.S. Geological Survey. 2012. USGS EROS archive—Digital elevation—Interferometric Synthetic Aperture Radar (IFSAR)—Alaska. https://www.usgs.gov/centers/eros/science/usgs–eros–archive–digital–elevation–interferometric–synthetic–aperture–radar?qt–science_center_objects=0#qt–science_center_objects.
  • Verbyla, D. 2008. The greening and browning of Alaska based on 1982–2003 satellite data. Global Ecology and Biogeography 17:547–55.
  • Viereck, L. A., C. T. Dyrness, C. T. Batten, and K. J. Wenzlick. 1992. The Alaska vegetation classification. PNW-GTR-286. U. S. Department of Agriculture, Forest Service, Portland, OR.
  • Walker, D. A., M. K. Raynolds, F. J. A. Daniëls, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, et al. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science. 16 (3):267–82. doi:10.1111/j.1654-1103.2005.tb02365.x.
  • Wheeler, H. C., T. T. Høye, and J. C. Svenning. 2018. Wildlife species benefitting from a greener Arctic are most sensitive to shrub cover at leading range edges. Global Change Biology 24:212–23. doi:10.1111/gcb.13837.