4,280
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Surface atmospheric duct over Svalbard, Arctic, related to atmospheric and ocean conditions in winter

, , , , , & show all
Pages 264-273 | Received 18 Jan 2022, Accepted 25 Apr 2022, Published online: 01 Aug 2022

References

  • Arthun, M., I. H. Onarheim, J. Dorr, T. Eldevik. 2021. The seasonal and regional transition to an ice-free Arctic. Geophysical Research Letters 48 (1):e2020GL090825. doi:10.1029/2020GL090825.
  • Atkinson, B. W., and M. Zhu. 2006. Coastal effects on radar propagation in atmospheric ducting conditions. Meteorological Applications 13 (1):53–62. doi:10.1017/S1350482705001970.
  • Babin, S. M., and J. R. Rowland. 1992. Observation of a strong surface radar duct using helicopter acquired fine-scale radio refractivity measurements. Geophysical Research Letters 19 (9):917–20. doi:10.1029/92GL00562.
  • Babin, S. M. 1996. Surface duct height distributions for Wallops Island, Virginia, 1985-1994. Journal of Applied Meteorology 35 (1):86–93. doi:10.1175/1520-0450(1996)035<0086:SDHDFW>2.0.CO;2.
  • Barnhart, K. R., C. R. Miller, I. Overeem. 2015. Mapping the future expansion of Arctic open water. Nature Climate Change 6. doi:10.1038/NCLIMATE2848.
  • Bean, B. R., and E. J. Dutton. 1968. Radio Meteorology, 435. New York: Dover Publication Inc.
  • Berkryaev, R. V., I. V. Polyakov, and V. A. Alexeev. 2010. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate 23 (14):3888–906. doi:10.1175/2010JCLI3297.1.
  • Borsum, D. L. 1995. Doppler dilemma delineates danger from dirt. In National Weather Service Western Region technical attachment 95-07, 7. Boise, ID: National Weather Service Field Office. https://www.weather.gov/media/wrh/online_publications/TAs/ta9507.pdf
  • Bradley, R. S., and F. T. Keimig. 1992. Climatology of surface-based inversions in the North American Arctic. Journal of Geophysical Research 97 (D14):15699–712. doi:10.1029/92JD01451.
  • Brooks, I. M., A. K. Goroch, and D. P. Rogers. 1999. Observations of strong surface radar ducts over the Persian Gulf. Journal of Applied Meteorology 38 (9):1294–310. doi:10.1175/1520-0450(1999)038<1293:OOSSRD>2.0.CO;2.
  • Cai, Q., J. Wang, D. Beletsky, J. Overland, M. Ikeda, L. Wan. 2021. Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environmental Research Letters 16 (3):034015. doi:10.1088/1748-9326/abdb5f.
  • Cai, Z., Q. You, F. Wu. 2021. Arctic warming revealed by multiple CMIP6 models: Evaluation of historical simulations and quantification of future projection uncertainties. Journal of Climate 34:4871–92. doi:10.1175/JCLI-D-20-0791.1.
  • Cao, Y., M. Yu, F. Hui, J. Zhang, X. Cheng. 2021. Review of navigability changes in trans-Arctic routes. Chinese Science Bulletin 66 (1):21–33. doi:10.1360/TB-2020-0596.
  • Chen, S., Y. Cao, F. Hui, X. Cheng. 2019. Observed spatial-temporal changes in the autumn navigability of the Arctic Northeast Route from 2010 to 2017. Chinese Science Bulletin 64(14):1515–25. in Chinese. doi:10.1360/N972018-01083.
  • Cheng, Y., S. Zhou, D. Wang, Y. Lu, J. Yao. 2015. Statistical characteristics of the surface ducts over the South China Sea from GPS radiosonde data. Acta Oceanologica Sinica 34 (11):63–70. doi:10.1007/s13131-015-0749-x.
  • Cohen, J., J. Jones, J. C. Furtado, and E. Tziperman. 2013. Warm Arctic, cold continents: A common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26 (4):150–60. doi:10.5670/oceanog.2013.70.
  • Cohen, J., J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7 (9):627–37. doi:10.1038/NGEO2234.
  • Cosmiso, J. C., C. L. Parkinson, R. Gersten. 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35:L01703. doi:10.1029/2007GL031972.
  • Dai, A., D. Luo, M. Song, J. Liu. 2019. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications 10 (1):121. doi:10.1038/s41467-018-07954-9.
  • Davy, R., and S. Outten. 2020. The Arctic surface climate in CMIP6: Status and developments since CMIP5. Journal of Climate 33 (18):8047–68. doi:10.1175/JCLI-D-19-0990.s1.
  • Eastman, R., and S. G. Warren. 2010. Interannual variations of Arctic cloud types in relation to sea ice. Journal of Climate 23 (15):4216–32. doi:10.1175/2010JCLI3492.1.
  • Engeln, A., and J. Teixeira. 2004. A ducting climatology derived from the European Centre for Medium-Range Weather Forecasts global analysis fields. Journal of Geophysical Research 109 (D18):D18104. doi:10.1029/2003JD004380.
  • Gao, Y., J. Sun, L. F, S. He, S. Sandven, Q. Yan, Z. Zhang, K. Lohmann, N. Keenlyside, T. Furevik, et al. 2015. Arctic sea ice and Eurasian climate: A review. Advances in Atmospheric Sciences. 32(1):92–114. doi:10.1007/s00376-014-0009-6.
  • Gossard, E. E. 1977. Refractive index variance and its height distribution in different air masses. Radio Science 12 (1):89–105. doi:10.1029/RS012i001p00089.
  • Hao, X., Q. Li, L. Guo. 2018. Spatial and temporal features of atmospheric ducts over the North Pole. Chinese Journal of Polar Research 30:349–59. in Chinese
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, et al. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146 (730):1999–2049. doi:10.1002/qj.3803.
  • Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, H.-M. Zhang. 2021. Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. Journal of Climate 34(8):2923–39. V2.1. doi:10.1175/JCLI-D-20-0166.1.
  • Intergovernmental Panel on Climate Change. 2013. Climate change 2013: The physical science basis. Contribution of working group I to The Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. 1535. 10.1017/CBO9781107415324
  • Kaissassou, S., A. Lenouo, A. Nzeukou, C. Tchawoua, D. A. Vondou. 2015. Seasonal variations of surface duct conditions in Ngaoundere, North Cameroon. Meteorology and Atmospheric Physics 127 (6):659–74. doi:10.1007/s00703-015-0387-z.
  • Lenouo, A. 2014. Climatology of anomalous propagation radar over Douala, Cameroon. Meteorological Applications 21:249–55. doi:10.1002/met.1321.
  • Li, Z., J. W. Ringsberg, and F. Rita. 2021. A voyage planning tool for ships sailing between Europe and Asia via the Arctic. Ships and Offshore Structures 15 (1):S10–S19. doi:10.1080/17445302.2020.1739369.
  • Liu, Y., J. R. Key, and X. Wang. 2009. Influence of changes in sea ice concentration and cloud cover on recent Arctic surface temperature trends. Geophysical Research Letters 36 (20):L20710. doi:10.1029/2009GL040708.
  • Lopez, P. 2009. A 5-yr 40-km-resolution global climatology of superrefraction for ground-based weather radars. Journal of Applied Meteorology and Climatology 48 (1):89–110. doi:10.1175/2008JAMC1961.1.
  • Mai, Y., Z. Sheng, H. Shi. 2020. Spatiotemporal distribution of atmospheric ducts in Alaska and its relationship with the Arctic vortex. International Journal of Antennas and Propagation 9673289. doi:10.1155/2020/9673289.
  • Maturilli, M. 2018a. Expanded measurements from station Ny-Ålesund. PANGAEA: Alfred Wegener Institute - Research Unit Potsdam. doi:10.1594/PANGAEA.892409.
  • Maturilli, M. 2018b. High resolution radiosonde measurements from station Ny-Ålesund. PANGAEA: Alfred Wegener Institute - Research Unit Potsdam. doi:10.1594/PANGAEA.891224.
  • Maturilli, M. 2020. Basic and other measurements of radiation at station Ny-Ålesund. Alfred Wegener Institute - Research Unit Potsdam, PANGAEA. doi: 10.1594/PANGAEA.913150.
  • Melia, N., K. Haines, and E. Hawkins. 2016. Sea ice decline and 21st century trans-Arctic shipping routes. Geophysical Research Letters 43 (18):9720–28. doi:10.1002/2016GL069315.
  • Mentes, S. S., and Z. Kaymaz. 2007. Investigation of surface duct conditions over Istanbul, Turkey. Journal of Applied Meteorology and Climatology 46 (3):318–37. doi:10.1175/JAM2452.1.
  • Mesnard, F., and H. Sauvageot. 2010. Climatology of anomalous propagation radar echoes in a coastal area. Journal of Applied Meteorology and Climatology 49 (11):2285–300. doi:10.1175/2010JAMC2440.1.
  • Monroe, E. E., P. C. Taylor, and L. N. Boisvert. 2021. Arctic cloud response to a perturbation in sea ice concentration: The North Water polynya. Journal of Geophysical Research: Atmospheres 126 (16):e2020JD034409. doi:10.1029/2020JD034409.
  • Mosczkowicz, S., G. J. Ciach, and W. F. Krajewski. 1994. Statistical detection of anomalous propagation in radar reflectivity patterns. Journal of Atmospheric and Oceanic Technology 11 (4):1026–34. doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2.
  • Raddatz, R. L., M. G. Asplin, T. Papakyriakou, L. M. Candlish, R. J. Galley, B. Else, D. G. Barber. 2013. All-sky downwelling longwave radiation and atmospheric-column water vapour and temperature over the western maritime Arctic. Atmosphere-Ocean 51 (2):145–52. doi:10.1080/07055900.2012.760441.
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, W. Wang. 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate. 15(13):1609–25. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
  • Ruckstuhl, C., R. Philipona, J. Morland, A. Ohmura. 2007. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. Journal of Geophysical Research 112 (D3):D03302. doi:10.1029/2006JD007850.
  • Screen, J. A., and I. Simmonds. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464 (7293):1334–37. doi:10.1038/nature09051.
  • Serreze, M. C., A. P. Barrett, and J. J. Cassano. 2011. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. Journal of Geophysical Research 116 (D7):D07104. doi:10.1029/2010JD015127.
  • Shepherd, T. G. 2016. Effects of a warming Arctic. Science 353 (6303):989–90. doi:10.1126/science.aag2349.
  • Stull, R. B. 1988. An introduction to boundary layer meteorology, 666. Dordrecht, Boston and London: Kluwer Academic Publishers. doi:10.1007/978-94-009-3027-8.
  • Symon, C., L. Arris, and B. Heal. 2004. Arctic climate impact assessment. New York: Cambridge Univ. Press.
  • Tomczyk, A. M., E. B. Lupikasza, and S. Kendzierski. 2019. Warm winter and cold summer spells in Spitsbergen and their circulation conditions. Polish Polar Research 40:339–59. doi:10.24425/ppr.2019.130902.
  • Viher, M., M. T. Prtenjak, and B. Grisogono. 2013. A multi-year study of the anomalous propagation conditions along the coast of the Adriatic Sea. Journal of Atmospheric and Solar-Terrestrial Physics 97:75–84. doi:10.1016/j.jastp.2013.01.014.
  • Yamanouchi, T., and S. Kawaguchi. 1984. Longwave radiation balance under as strong surface inversion in the Katabatic Wind Zone, Antarctica. Journal of Geophysical Research 89 (D7):11771–78. doi:10.1029/JD089iD07p11771.
  • Yamanouchi, T. 2019. Arctic warming by cloud radiation enhanced by moist air intrusion observed at Ny-Ålesund, Svalbard. Polar Science 21:110–16. doi:10.1016/j.polar.2018.10.009.
  • Yeo, H., S.-J. Park, B.-M. Kim, M. Shiobara, S.-W. Kim, H. Kwon, J.-H. Kim, J.-H. Jeong, S. S. Park, T. Choi, et al. 2018. The observed relationship of cloud to surface longwave radiation and air temperature at Ny-Ålesund, Svalbard. Tellus B: Chemical and Physical Meteorology 70 (1):1–10. doi:10.1080/16000889.2018.1450589.
  • Yu, M., P. Lu, Z. Li, D. Balk, C. Corbane, V. Syrris, and A. J. Florczyk. 2020. Sea ice conditions and navigability through the Northeast Passage in the past 40 years based on remote-sensing data. International Journal of Digital Earth 13 (1):22–44. doi:10.1080/17538947.2020.1860144.
  • Zhanyu, Y., Z. Bolin, L. Wanbiao, Z. Yuanjing, D. Jinlin, and D. Fushan. 2000. The analysis on characteristics of atmospheric duct and its effects on the propagation of electromagnetic wave. Acta Meteorologica Sinica 58 (5): 605–15. doi:10.11676/qxxb2000.062. in Chinese.