5,165
Views
3
CrossRef citations to date
0
Altmetric
PalaeoArc: Processes and Palaeo-environmental Changes in the Arctic - from Past to Present

MIS 3 age of the Veiki moraine in N Sweden – Dating the landform record of an intermediate-sized ice sheet in Scandinavia

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 239-261 | Received 09 Jan 2022, Accepted 14 Jun 2022, Published online: 14 Jul 2022

References

  • Aartolahti, T. 1974. Ring ridge hummocky moraines in northern Finland. Fennia-International Journal of Geography 134, 22.
  • Aitken, M. J. 1985. Thermoluminescence dating, 359. London: Academic.
  • Alexanderson, H., and A. S. Murray. 2007. Was southern Sweden ice free at 19-25 ka, or were the post LGM glacifluvial sediments incompletely bleached? Quaternary Geochronology 2 (1–4):229–36. doi:10.1016/j.quageo.2006.05.007.
  • Alexanderson, H., T. Johnsen, and A. S. Murray. 2010. Re-dating the Pilgrimstad interstadial with OSL: A warmer climate and a smaller ice sheet during the Swedish Middle Weichselian (MIS 3)? Boreas 39 (2):367–76. doi:10.1111/j.1502-3885.2009.00130.x.
  • Alexanderson, H., M. Hättestrand, J. P. Buylaert. 2011. New dates from the Riipiharju interstadial site, northernmost Sweden. Vol. 71 of INQUA PeriBaltic Working Group; Geological Survey of Finland, eds. P. Johansson, J. P. Lunkka, and P. Sarala. Northern Finland: Geological Survey of Finland.
  • Alexanderson, H., and A. S. Murray. 2012. Problems and potential of OSL dating Weichselian and Holocene sediments in Sweden. Quaternary Science Reviews 44:37–50. doi:10.1016/j.quascirev.2009.09.020.
  • Alexanderson, H. 2022. Luminescence characteristics of Scandinavian quartz, their connection to bedrock provenance and influence on dating results. Quaternary Geochronology 69:101272. doi:10.1016/j.quageo.2022.101272.
  • Ankjærgaard, C., M. Jain, K. J. Thomsen, and A. S. Murray. 2010. Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation. Radiation Measurements 45 (7):778–85. doi:10.1016/j.radmeas.2010.03.004.
  • Arnold, L. J., R. M. Bailey, and G. E. Tucker. 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2 (1–4):162–67. doi:10.1016/j.quageo.2006.05.003.
  • Banerjee, D., A. S. Murray, L. Bøtter-Jensen, and A. Lang. 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33 (1):73–94. doi:10.1016/S1350-4487(00)00101-3.
  • Batchelor, C. L., M. Margold, M. Krapp, D. K. Murton, A. S. Dalton, P. L. Gibbard, C. R. Stokes, J. B. Murton, and A. Manica. 2019. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nature Communications 10 (1):3713. doi:10.1038/s41467-019-11601-2.
  • Bøtter-Jensen, L., K. J. Thomsen, and M. Jain. 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45 (3–6):253–57. doi:10.1016/j.radmeas.2009.11.030.
  • Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1):337–60. doi:10.1017/S0033822200033865.
  • Burow, C. 2021a. Calc_CentralDose(): Apply the central age model (CAM) after Galbraith et al. (1999) to a given De distribution: Function version 1.4.0. In Luminescence: Comprehensive luminescence dating data analysis. R package version 0.9.11, S. Kreutzer, C. Burow, M. Dietze, M. C. Fuchs, C. Schmidt, M. Fischer, J. Friedrich, N. Mercier, S. Riedesel, and M. Autzen, et al. ed., 1.4.0., Function version https://CRAN.R-project.org/package=Luminescence(accessed December 13, 2021).
  • Burow, C. 2021b. Calc_MinDose(): Apply the (un-)logged minimum age model (MAM) after Galbraith et al. (1999) to a given De distribution. Function version 0.4.4. In Luminescence: Comprehensive luminescence dating data analysis. R package version 0.9.11, S. Kreutzer, C. Burow, M. Dietze, M. C. Fuchs, C. Schmidt, M. Fischer, J. Friedrich, N. Mercier, S. Riedesel, M. Autzen, et al. ed.,
  • Clark, P. U., A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler, and A. M. McCabe. 2009. The last glacial maximum. Science 325 (5941):710–14. doi:10.1126/science.1172873.
  • Clayton, L., J. W. Attig, N. R. Ham, M. D. Johnson, C. E. Jennings, and K. M. Syverson. 2008. Ice-walled-lake plains: Implications for the origin of hummocky glacial topography in middle North America. Geomorphology 97 (1–2):237–48. doi:10.1016/j.geomorph.2007.02.045.
  • Daniel, E. 1975. Glacialgeologi inom kartbladet Moskosel i mellersta Lappland. Geological Survey of Sweden Ba 25:121.
  • Duller, G. A. T. 2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas 37 (4):589–612. doi:10.1111/j.1502-3885.2008.00051.x.
  • Durcan, J. A., and G. A. T. Duller. 2011. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiation Measurements 46 (10):1065–72. doi:10.1016/j.radmeas.2011.07.016.
  • Durcan, J. A., G. E. King, and G. A. T. Duller. 2015. DRAC: Dose rate and age calculator for trapped charge dating. Quaternary Geochronology 28:54–61. doi:10.1016/j.quageo.2015.03.012.
  • Fredholm, K. A. 1886. Öfversigt af Norrbottens geologi inom Pajala, Muonionalusta och Tärändö socknar. Geological Survey of Sweden C 83:39.
  • Fuchs, M., and L. A. Owen. 2008. Luminescence dating of glacial and associated sediments: Review, recommendations and future directions. Boreas 37 (4):636–59. doi:10.1111/j.1502-3885.2008.00052.x.
  • Galbraith, R. F., R. G. Roberts, G. M. Laslett, H. Yoshida, and J. M. Olley. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part I: Experimental design and statistical models. Archaeometry 41 (2):339–64. doi:10.1111/j.1475-4754.1999.tb00987.x.
  • Geijer, P. 1917. Om landisens avsmältningsförhållanden inom Nautanenområdet vid Gällivare. Geological Survey of Sweden C 277. 36.
  • Geijer, P. 1948. Några synpunkter på isavsmältningens förlopp i nordligaste Sverige. Geologiska Föreningen i Stockholm Förhandlingar 70 (4):575–82. doi:10.1080/11035894809445153.
  • Gliganic, L. A., T. J. Cohen, M. Meyer, and A. Molenaar. 2017. Variations in luminescence properties of quartz and feldspar from modern fluvial sediments in three rivers. Quaternary Geochronology 41:70–82. doi:10.1016/j.quageo.2017.06.005.
  • Gravenor, C. P., and W. O. Kupsch. 1959. Ice-disintegration features in western Canada. The Journal of Geology 67 (1):48–64. doi:10.1086/626557.
  • Hättestrand, M., H. Alexanderson, T. Sigfúsdóttir, E. Hammarström, C. Hättestrand, M. Regnell, and J. Kleman In prep.: Evidence of decay of an intermediate sized ice sheet during warm climatic conditions in MIS 3 in northern Sweden.
  • Hättestrand, C. 1998. The glacial geomorphology of central and northern Sweden. Geological Survey of Sweden Ca 85:47.
  • Hättestrand, M. 2007. Weichselian interstadial pollen stratigraphy from a Veiki plateau at Rissejauratj in Norrbotten, northern Sweden. GFF 129 (4):287–94. doi:10.1080/11035890701294287.
  • Hättestrand, M. 2008: Vegetation and climate during Weichselian ice free intervals in northern Sweden. Stockholm University, PhD thesis. 35 pp. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8222.
  • Hättestrand, M., and A.-M. Robertsson. 2010. Weichselian interstadials at Riipiharju, northern Sweden – Interpretation of vegetation and climate from fossil and modern pollen records. Boreas 39 (2):296–311. doi:10.1111/j.1502-3885.2009.00129.x.
  • Hättestrand, C., H. Alexanderson, M. Hättestrand, T. Sigfusdottir, and L. V. Jakobsen 2014: Veiki moraine–morphology, stratigraphy and paleoglaciological implications of an ice-walled lake plain topography in northern Sweden. 31st Nordic Geological Winter Meeting, 2014, Lund, Sweden.
  • Helmens, K. F., M. E. Räsänen, P. W. Johansson, H. Jungner, and K. Korjonen. 2000. The last interglacial-glacial cycle in NE Fennoscandia: A nearly continuous record from Sokli (Finnish Lapland). Quaternary Science Reviews 19 (16):1605–23. doi:10.1016/S0277-3791(00)00004-4.
  • Helmens, K. F., P. W. Johansson, M. E. Räsänen, H. Alexanderson, and K. O. Eskola. 2007. Ice-free intervals at Sokli continuing into Marine Isotope Stage 3 in the central area of the Scandinavian glaciations. Bulletin of the Geological Society of Finland 79 (1):17–39. doi:10.17741/bgsf/79.1.002.
  • Högbom, A. 1931. Praktisk-geologiska undersökningar inom Jokkmokk. Geological Survey of Sweden C 369:57.
  • Hoppe, G. 1952. Hummocky moraine regions with special reference to the interior of Norrbotten. Geografiska Annaler 67:48–67.
  • Hoppe, G. 1957. Problems of glacial morphology and the Ice Age. Geografiska Annaler 39:1–18.
  • Hua, Q., M. Barbetti, and A. Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55 (4):2059–72. doi:10.2458/azu_js_rc.v55i2.16177.
  • Hughes, A. L. C., R. Gyllencreutz, Ø. S. Lohne, J. Mangerud, and J. I. Svendsen. 2016. The last Eurasian ice sheets – A chronological database and time-slice reconstruction, DATED-1. Boreas 45:1–45.
  • Johansson, P., and J. Nenonen. 1991. Till stratigraphical studies in the Pulju area in northern Finland. Geological Survey of Finland, Special Paper 12:131–34.
  • Johansson, P., J. P. Lunkka, and P. Sarala. 2011. The glaciation of Finland. In Developments in quaternary sciences, ed. P. L. G. Jürgen Ehlers and D. H. Philip, 105–16. Elsevier.
  • Kleman, J., A. P. Stroeven, and J. Lundqvist. 2008. Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation. Geomorphology 97 (1–2):73–90. doi:10.1016/j.geomorph.2007.02.049.
  • Kleman, J., M. Hättestrand, I. Borgström, F. Preusser, and D. Fabel. 2020. The Idre marginal moraine – An anchorpoint for middle and late Weichselian ice sheet chronology. Quaternary Science Advances 2:100010. doi:10.1016/j.qsa.2020.100010.
  • Kleman, J., M. Hättestrand, I. Borgström, D. Fabel, and F. Preusser. 2021. Age and duration of a MIS 3 interstadial in the Fennoscandian Ice Sheet core area – Implications for ice sheet dynamics. Quaternary Science Reviews 264:107011. doi:10.1016/j.quascirev.2021.107011.
  • Knudsen, C. G., E. Larsen, H. P. Sejrup, and K. Stalsberg. 2006. Hummocky moraine landscape on Jæren, SW Norway—implications for glacier dynamics during the last deglaciation. Geomorphology 77 (1–2):153–68. doi:10.1016/j.geomorph.2005.12.011.
  • Kujansuu, R. 1967. On the deglaciation of western finnish lapland. Bulletin de la Commission Géologique de Finlande 232:98.
  • Kunz, A., D. Pflanz, T. Weniger, B. Urban, F. Krüger, and Y.-G. Chen. 2013. Optically stimulated luminescence dating of young fluvial deposits of the Middle Elbe River Flood Plains using different age models. Geochronometria 41 (1):36–56. doi:10.2478/s13386-013-0140-7.
  • Lagerbäck, R., and A.-M. Robertsson. 1988. Kettle holes - stratigraphical archives for Weichselian geology and palaeoenvironment in northernmost Sweden. Boreas 17 (4):439–68. doi:10.1111/j.1502-3885.1988.tb00561.x.
  • Lagerbäck, R. 1988a. Periglacial phenomena in the wooded areas of Northern Sweden - relicts from the Tärendö Interstadial. Boreas 17 (4):487–99. doi:10.1111/j.1502-3885.1988.tb00563.x.
  • Lagerbäck, R. 1988b. The Veiki moraines in northern Sweden - widespread evidence of an early Weichselian deglaciation. Boreas 17 (4):469–86. doi:10.1111/j.1502-3885.1988.tb00562.x.
  • Lagerbäck, R. 2007. Ventifacts – Means to reconstruct glacial development and palaeoenvironment in northern and central Sweden. GFF 129 (4):315–24. doi:10.1080/11035890701294315.
  • Lantmäteriet 2015: Product description: GSD-elevation data, grid 2+.
  • Lindqvist, M. A. 2020. Kortejärvi Veiki moraine plateau - a key to the glacial history of northern Sweden. UiT the Arctic University of Norway, MSc Thesis 109. https://hdl.handle.net/10037/18227
  • Lowick, S. E., M. W. Buechi, D. Gaar, H. R. Graf, and F. Preusser. 2015. Luminescence dating of Middle Pleistocene proglacial deposits from northern Switzerland: Methodological aspects and stratigraphical conclusions. Boreas 44 (3):459–82. doi:10.1111/bor.12114.
  • Lundqvist, G. 1943. Norrlands jordarter. Geological Survey of Sweden C 457:166.
  • Lundqvist, J. 1981. Moraine morphology: Terminological remarks and regional aspects. Geografiska Annaler: Series A, Physical Geography 63:127–38.
  • Lundqvist, J., and A.-M. Robertsson. 2002. Istider och mellanistider. In Sveriges Nationalatlas: Berg och jord, C. Fredén ed., 3rd ed., 120–24.
  • Medialdea, A., K. J. Thomsen, A. S. Murray, and G. Benito. 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology 22:11–24. doi:10.1016/j.quageo.2014.01.004.
  • Minell, H. 1979. The genesis of tills in different moraine types and the deglaciation in a part of central Lapland. Geological Survey of Sweden Ca 754:83.
  • Möller, P., J. Anjar, and A. S. Murray. 2013. An OSL-dated sediment sequence at Idre, west-central Sweden, indicates ice-free conditions in MIS 3. Boreas 42 (1):25–42. doi:10.1111/j.1502-3885.2012.00284.x.
  • Murray, A. S., R. Marten, A. Johnson, and P. Martin. 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry Articles 115 (2):263–88. doi:10.1007/BF02037443.
  • Murray, A. S., and A. G. Wintle. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32 (1):57–73. doi:10.1016/S1350-4487(99)00253-X.
  • Murray, A. S., and A. G. Wintle. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements 37 (4–5):377–81. doi:10.1016/S1350-4487(03)00053-2.
  • Pietsch, T. J., J. M. Olley, and G. C. Nanson. 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3 (4):365–76. doi:10.1016/j.quageo.2007.12.005.
  • Rasmussen, S. O., M. Bigler, S. P. Blockley, T. Blunier, S. L. Buchardt, H. B. Clausen, I. Cvijanovic, D. Dahl-Jensen, S. J. Johnsen, H. Fischer, et al. 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106:14–28. doi:10.1016/j.quascirev.2014.09.007.
  • Reimer, P. J., W. E. Austin, E. Bard, A. Bayliss, P. G. Blackwell, C. B. Ramsey, M. Butzin, H. Cheng, R. L. Edwards, and M. Friedrich. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62 (4):725–57. doi:10.1017/RDC.2020.41.
  • Rhodes, E. J. 2011. Optically Stimulated Luminescence Dating of Sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences 39 (1):461–88. doi:10.1146/annurev-earth-040610-133425.
  • Rodnight, H. 2008. How many equivalent dose values are needed to obtain a reproducible distribution? Ancient TL 26:3–9.
  • Seierstad, I. K., P. M. Abbott, M. Bigler, T. Blunier, A. J. Bourne, E. Brook, S. L. Buchardt, C. Buizert, H. B. Clausen, E. Cook, et al. 2014. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews 106:29–46.
  • Seppälä, M. 1972. Location, Morphology and Orientation of Inland Dunes in Northern Sweden. Geografiska Annaler: Series A, Physical Geography 54 (2):85–104. doi:10.1080/04353676.1972.11879860.
  • SGU 2014: Jordarter 1:250 000, nordligaste Sverige http://www.sgugeolagret.se/GeoLagret/.
  • SGU 2016: Berggrund 1:1 miljon. Geological Survey of Sweden.
  • SGU 2021: Kartvisare: Jorddjup (Map viewer: Soil depth). Geological Survey of Sweden, sgu.se.
  • Sigfúsdóttir, T. 2013: A sedimentological and stratigraphical study of Veiki moraine in northernmost Sweden. Lund University, MSc thesis. 27 pp. http://lup.lub.lu.se/student-papers/record/3911959.
  • Steffen, D., F. Preusser, and F. Schlunegger. 2009. OSL quartz age underestimation due to unstable signal components. Quaternary Geochronology 4 (5):353–62. doi:10.1016/j.quageo.2009.05.015.
  • Stroeven, A. P., C. Hättestrand, J. Kleman, J. Heyman, D. Fabel, O. Fredin, B. W. Goodfellow, J. M. Harbor, J. D. Jansen, L. Olsen, et al. 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147:91–121.
  • Sutinen, R., E. Hyvönen, M. Middleton, and T. Ruskeeniemi. 2014. Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change 115:24–32. doi:10.1016/j.gloplacha.2014.01.007.
  • Svendsen, J. I., H. Alexanderson, V. I. Astakhov, I. Demidov, J. A. Dowdeswell, S. Funder, V. Gataullin, M. Henriksen, C. Hjort, M. Houmark-Nielsen, et al. 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23 (11–13):1229–71. doi:10.1016/j.quascirev.2003.12.008.
  • Tanner, V. 1915. Studier öfver kvartärsystemet i Fennoskandias nordliga delar. Helsinki.
  • Ukkonen, P., L. Arppe, M. Houmark-Nielsen, K. H. Kjær, and J. A. Karhu. 2007. MIS 3 mammoth remains from Sweden - implications for faunal history, palaeoclimate and glaciation chronology. Quaternary Science Reviews 26 (25–28):3081–98. doi:10.1016/j.quascirev.2007.06.021.
  • Westergård, A. H. 1906. Platålera, en supramarin hvarfvig lera från Skåne. Geologiska Föreningen i Stockholm Förhandlingar 28 (5):408–14. doi:10.1080/11035890609445527.
  • Wohlfarth, B. 2010. Ice-free conditions in Sweden during Marine oxygen isotope Stage 3? Boreas 39 (2):377–98. doi:10.1111/j.1502-3885.2009.00137.x.
  • Zhao, X., J. Wang, M. Wei, Z. Lai, M. Fan, J. Zhao, B. Pan, Y. Zhao, X. Li, and Q. Zhao. 2017. Optically stimulated luminescence dating of Holocene palaeoflood deposits in the middle reach of the Yongding River, China. Quaternary International 453:37–47. doi:10.1016/j.quaint.2017.02.013.