3,862
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Microbial iron reduction and greenhouse gas production in response to organic matter amendment and temperature increase of periglacial sediments, Bolterdalen, Svalbard

, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all
Pages 314-334 | Received 19 Aug 2020, Accepted 28 Jun 2022, Published online: 09 Aug 2022

References

  • Achtnich, C., F. Bak, and R. Conrad. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 19 (1):65–72. doi:10.1007/bf00336349.
  • Alves, R. J. E., W. Wanek, A. Zappe, A. Richter, M. M. Svenning, C. Schleper, and T. Urich. 2013. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. The ISME Journal 7:1620–31. doi:10.1038/ismej.2013.35.
  • Bárcena, T. G., J. C. Yde, and K. W. Finster. 2010. Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland. Annals of Glaciology 51 (56):23–31. doi:10.3189/172756411795932001.
  • Bárcena, T. G., K. W. Finster, and J. C. Yde. 2011. Spatial patterns of soil development, methane oxidation, and methanotrophic diversity along a receding glacier forefield, southeast Greenland. Arctic, Antarctic, and Alpine Research 43 (2):178–88. doi:10.1657/1938-4246-43.2.178.
  • Bischoff, J., K. Mangelsdorf, A. Gattinger, M. Schloter, A. N. Kurchatova, U. Herzschuh, and D. Wagner. 2013. Response of methanogenic archaea to late Pleistocene and Holocene climate changes in the Siberian Arctic. Global Biogeochemical Cycles 27 (2):305–17. doi:10.1029/2011gb004238.
  • Boike, J. 2009. SPARC and disappearing permafrost—A story from Bayelva in Svalbard. Svalbard 25 Science Forum.
  • Braunschweig, J., J. Bosch, K. Heister, C. Kuebeck, and R. U. Meckenstock. 2012. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. Journal of Microbiological Methods 89 (1):41–48. doi:10.1016/j.mimet.2012.01.021.
  • Cabrol, L., A. Marone, E. Tapia-Venegas, J.-P. Steyer, G. Ruiz-Filippi, and E. Trably. 2017. Microbial ecology of fermentative hydrogen producing bioprocesses: Useful insights for driving the ecosystem function. FEMS Microbiology Reviews 41:158–81. doi:10.1093/femsre/fuw043.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13:581–83. doi:10.1038/nmeth.3869.
  • Christiansen, H. H., B. Etzelmüller, K. Isaksen, H. Juliussen, H. Farbrot, O. Humlum, M. Johansson, T. Ingeman-Nielsen, L. Kristensen, and J. Hjort. 2010. The thermal state of permafrost in the Nordic area during the International Polar Year 2007–2009. Permafrost and Periglacial Processes 21 (2):156–81. doi:10.1002/ppp.687.
  • Chu, H., N. Fierer, C. L. Lauber, J. Caporaso, R. Knight, and P. Grogan. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology 12:2998–3006. doi:10.1111/j.1462-2920.2010.02277.x.
  • Coupland, K., and D. B. Johnson. 2008. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiology Letters 279:30–35. doi:10.1111/j.1574-6968.2007.00998.x.
  • Elberling, B., A. Michelsen, C. Schädel, E. A. G. Schuur, H. H. Christiansen, L. Berg, M. P. Tamstorf, and C. Sigsgaard. 2013. Long-term CO2 production following permafrost thaw. Nature Climate Change 3 (10):890–94. doi:10.1038/nclimate1955.
  • Emmerson, D., J. J. Scott, J. Benes, W. B. Bowden, and F. E. Löffler. 2015. Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling. Applied and Environmental Microbiology 81 (23):8066–75. doi:10.1128/AEM.02832-15.
  • Førland, E. J., R. Benestad, I. Hanssen-Bauer, J. E. Haugen, and T. E. Skaugen. 2011. Temperature and precipitation development at Svalbard 1900–2100. Advances in Meteorology 2011:893790. doi:10.1155/2011/893790.
  • Fouché, J., C. T. Christiansen, M. J. Lafrenière, P. Grogan, and S. F. Lamoureux. 2020. Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications 11:4500. doi:10.1038/s41467-020-18331-w.
  • Frank-Fahle, B. A., É. Yergeau, C. W. Greer, H. Lantuit, D. Wagner, and J. H. Badger. 2014. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS One 9 (1):e84761. doi:10.1371/journal.pone.0084761.
  • Frey, K. E., and J. W. McClelland. 2009. Impacts of permafrost degradation on Arctic river biogeochemistry. Hydrological Processes 23 (1):169–82. doi:10.1002/hyp.7196.
  • Ganzert, L., G. Jurgens, U. Münster, and D. Wagner. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiology Ecology 59:476–88. doi:10.1111/j.1574-6941.2006.00205.x.
  • Ganzert, L., F. Bajerski, and D. Wagner. 2014. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiology Ecology 89 (2):426–41. doi:10.1111/1574-6941.12352.
  • Giblin, A. E., K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre, and A. J. McKerrow. 1991. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecological Monographs 61 (4):415–35. doi:10.2307/2937049.
  • Gilbert, G. L., H. B. O’Neill, W. Nemec, C. Thiel, H. H. Christiansen, and J. P. Buylaert 2018. Late Quaternary sedimentation and permafrost development in a Svalbard fjord‐valley, Norwegian high Arctic. Sedimentology 65 (7):2531–58. doi:10.1111/sed.12476.
  • Gittel, A., J. Bárta, I. Kohoutova, J. Schnecker, B. Wild, P. Čapek, C. Kaiser, et al. 2014. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Frontiers in Microbiology 5:541. doi:10.3389/fmicb.2014.00541.
  • Groenendyk, D. G., T. P. A. Ferré, K. R. Thorp, and A. K. Rice. 2015. Hydrologic-process-based soil texture classifications for improved visualization of landscape function. PLoS ONE 10 (6):e0131299. doi:10.1371/journal.pone.0131299.
  • Hafez, R. M., T. M. Abdel-Rahman, and R. M. Naguib. 2017. Uric acid in plants and microorganisms: Biological applications and genetics – A review. Journal of Advanced Research 8:475–86. doi:10.1016/j.jare.2017.05.003.
  • Hansen, A. A., R. A. Herbert, K. Mikkelsen, L. L. Jensen, T. Kristoffersen, J. M. Tiedje, B. A. Lomstein, and K. W. Finster. 2007. Viability, diversity and composition of the bacterial community in a high Arctic permafrost soil from Spitsbergen, northern Norway. Environmental Microbiology 9 (1):2870–84. doi:10.1111/j.1462-2920.2007.01403.x.
  • Hedrich, S., M. Schlomann, and D. B. Johnson. 2011. The iron-oxidizing proteobacteria. Microbiology 157:1551–64. doi:10.1099/mic.0.045344-0.
  • Heikoop, J. M., H. M. Throckmorton, B. D. Newman, G. B. Perkins, C. M. Iversen, T. R. Chowdhury, and V. Romanovsky, et al. 2015. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem. Journal of Geophysical Research: Biogeosciences 120:1000–17. doi:10.1002/2014JG002883.
  • Herndon, E. M., Z. Yang, J. Bargar, N. Janot, T. Z. Regier, D. E. Graham, S. D. Wullschleger, B. Gu, and L. Liang. 2015. Geochemical drivers of organic matter decomposition in Arctic tundra soils. Biogeochemistry 126 (3):397–414. doi:10.1007/s10533-015-0165-5.
  • Hessen, D. O., J. Carroll, B. Kjeldstad, A. A. Koroso, L. H. Pettersson, D. Pozdnyakov, and K. Sørensen. 2010. Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries. Estuarine, Coastal and Shelf Science 88 (1):53–62. doi:10.1016/j.ecss.2010.03.006.
  • Hodson, A., P. Mumford, and D. Lister. 2004. Suspended sediment and phosphorus in proglacial rivers: Bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrological Processes 18 (13):2409–22. doi:10.1002/hyp.1471.
  • Hodson, A., A. Nowak, and H. Christiansen. 2015. Glacial and periglacial floodplain sediments regulate hydrologic transfer of reactive iron to a high Arctic fjord. Hydrological Processes 30 (8):1219–29. doi:10.1002/hyp.10701.
  • Holm, S., J. Walz, F. Horn, S. Yang, M. N. Grigoriev, D. Wagner, C. Knoblauch, and S. Liebner. 2020. Methanogenic response to long-term permafrost thaw is determined by paleoenvironment. FEMS Microbiology Ecology 96 (3):fiaa021. doi:10.1093/femsec/fiaa021.
  • Hopkins, F. M., T. R. Filley, G. Gleixner, M. Lange, S. M. Top, and S. E. Trumbore. 2014. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology and Biochemistry 76:57–69. doi:10.1016/j.soilbio.2014.04.028.
  • Humlum, O., A. Instanes, and J. L. Sollid. 2003. Permafrost in Svalbard: A review of research history, climatic background and engineering challenges. Polar Research 22 (2):191–215. doi:10.3402/polar.v22i2.6455.
  • Inglese, C. N., C. T. Christiansen, D. Lamhonwah, K. Moniz, S. N. Montross, and S. Lamoureux. 2017. Examination of soil microbial communities after permafrost thaw subsequent to an active layer detachment in the High Arctic. Arctic, Antarctic, and Alpine Research 49 (3):455–72. doi:10.1657/AAAR0016-066.
  • Johnson, D. B., B. Stallwood, S. Kimura, and K. B. Hallberg. 2006. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: A novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Archives of Microbiology 185 (3):212–21. doi:10.1007/s00203-006-0087-7.
  • Kappler, A. 2005. Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry 59 (1):85–108. doi:10.2138/rmg.2005.59.5.
  • Kappler, A., C. Bryce, M. Mansor, U. Luede, J. M. Byrne, and E. D. Swanner. 2021. An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology 19 (6):360–74. doi:10.1038/s41579-020-00502-7.
  • Keller, K., J. D. Blum, and G. W. Kling. 2007. Geochemistry of soils and streams on surfaces of varying ages in Arctic Alaska. Arctic, Antarctic, and Alpine Research 39 (1):84–98. doi:10.1657/1523-0430(2007)39[84:GOSASO]2.0.CO;2.
  • Keller, K., J. D. Blum, and G. W. Kling. 2010. Stream geochemistry as an indicator of increasing permafrost thaw depth in an Arctic watershed. Chemical Geology 273:76–81. doi:10.1016/j.chemgeo.2010.02.013.
  • Khvorostyanov, D. V., P. Ciais, G. Krinner, and S. A. Zimov. 2008. Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophysical Research Letters 35:L10703. doi:10.1029/2008GL033639.
  • Klindworth, A., E. Pruesse, T. Schweer, J. Peplies, C. Quast, H. Horn, and F. O. Glöckner. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41:1, e1. doi:10.1093/nar/gks808.
  • Knoblauch, C., C. Beer, S. Liebner, M. N. Grigoriev, and E.-M. Pfeiffer. 2018. Methane production as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change 8:309–12. doi:10.1038/s41558-018-0095-z.
  • Koch, K., C. Knoblauch, and D. Wagner. 2009. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea. Environmental Microbiology 11 (3):657–68. doi:10.1111/j.1462-2920.2008.01836.x.
  • Koyama, A., M. D. Wallenstein, R. T. Simpson, and J. C. Moore. 2014. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology 5:516. doi:10.3389/fmicb.2014.00516.
  • Lenth, R. V. 2021. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.5-1. https://CRAN.R-project.org/package=emmeans
  • Liestøl, O. 1977. Pingos, springs, and permafrost in Spitsbergen. Norsk Polarinstitutt, Årbok 1975:7–29.
  • Lipson, D. A., M. Jha, T. K. Raab, and W. C. Oechel. 2010. Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical Research 115:G4. doi:10.1029/2009jg001147.
  • Lipson, D. A., T. K. Raab, D. Goria, and J. Zlamal. 2013. The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain. Global Biogeochemical Cycles 27:1–11. doi:10.1002/gbc.20038.
  • List, C., Z. Hosseini, K. Lederballe Meibom, V. Hatzimanikatis, and R. Bernier-Latmani. 2019. Impact of iron reduction on the metabolism of Clostridium acetobutylicum. Environmental Microbiology 21:3548–63. doi:10.1111/1462-2920.14640.
  • Lonergan, D. J., H. L. Jenter, J. D. Coates, E. J. P. Phillips, T. M. Schmidt, and D. R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. Journal of Bacteriology 178 (8):2402–08. doi:10.1128/jb.178.8.2402-2408.1996.
  • Lønne, I. 2005. Faint traces of high Arctic glaciations: An early Holocene ice-front fluctuation in Bolterdalen, Svalbard. Boreas 34 (3):308–23. doi:10.1111/j.1502-3885.2005.tb01103.x.
  • Louca, S., L. W. Parfrey, and M. Doebeli. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–77. doi:10.1126/science.aaf4507.
  • Lovley, D. R., and E. J. P. Phillips. 1987. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Applied and Environmental Microbiology 53 (11):2636–41. doi:10.1128/aem.53.11.2636-2641.1987.
  • Loyaux-Lawniczak, S., S. Vuilleumier, and V. A. Geoffroy. 2019. Efficient reduction of iron oxides by paenibacillus spp. strains isolated from tropical soils. Geomicrobiology Journal 36:423–32. doi:10.1080/01490451.2019.1566415.
  • Mackelprang, R., S. R. Saleska, C. S. Jacobsen, J. K. Jansson, and N. Tas. 2016. Permafrost meta-omics and climate change. Annual Review of Earth and Planetary Sciences 44:439–62. doi:10.1146/annurev-earth-060614-105126.
  • Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17 (1):10–12. http://journal.embnet.org/index.php/embnetjournal/article/view/200/458.
  • Mateos-Rivera, A., J. C. Yde, B. Wilson, K. W. Finster, L. J. Reigstad, L. Øvreås, and R. Margesin. 2016. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-Arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiology Ecology 92 (4):fiw038. doi:10.1093/femsec/fiw038.
  • McMurdie, P. J., and S. Holmes. 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217.
  • Meier, J., R. Costa, K. Smalla, B. Boehrer, and K. Wendt-Potthoff. 2005. Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment. Geobiology 3 (4):261–74. doi:10.1111/j.1472-4669.2006.00065.x.
  • Mortimer, R. J. G., and M. L. Coleman. 1997. Microbial influence on the oxygen isotopic composition of diagenetic siderite. Geochimica et Cosmochimica Acta 61:1705–11. doi:10.1016/S0016-7037(97)00027-6.
  • Newman, B. D., H. M. Throckmorton, D. E. Graham, B. Gu, S. S. Hubbard, and L. Liang, Y. Wu, et al. 2015. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground. Geophysical Research Letters 42:1808–17. doi:10.1002/2014GL062804.
  • Nielsen, M. B., K. U. Kjeldsen, M. A. Lever, and K. Ingvorsen. 2014. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis. Ecotoxicology 23:404–18. doi:10.1007/s10646-014-1205-y.
  • Nixon, S. L., P. J. Telling, J. L. Wadham, and C. S. Cockell. 2017. Viable cold- tolerant iron-reducing microorganisms in geographically diverse subglacial environments. Biogeosciences 14:1445–55. doi:10.5194/bg-14-1445-2017.
  • Nørnberg, P., and K. Dalsgaard. 2009. Compendium to soil and water analyses. Aarhus: University of Aarhus.
  • Pautler, B. G., A. J. Simpson, D. J. Mcnally, S. F. Lamoureux, and M. J. Simpson. 2010. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environmental Science & Technology 44:4076–82. doi:10.1021/es903685j.
  • Petrie, L., N. N. North, S. L. Dollhopf, D. L. Balkwill, and J. E. Kostka. 2003. Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Applied and Environmental Microbiology 69 (12):7467–79. doi:10.1128/AEM.69.12.7467-7479.2003.
  • Ping, C. L., J. D. Jastrow, M. T. Jorgenson, G. J. Michaelson, and Y. L. Shur. 2015. Permafrost soils and carbon cycling. Soil 1:147–71. doi:10.5194/soil-1-147-2015.
  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41:D590–6. doi:10.1093/nar/gks1219.
  • R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Reyes, F. R., and V. L. Lougheed. 2015. Rapid nutrient release from permafrost thaw in Arctic aquatic ecosystems. Arctic, Antarctic, and Alpine Research 47 (1):35–48. doi:10.1657/AAAR0013-099.
  • Rotaru, A.-E., F. Calabrese, H. Stryhanyuk, F. Musat, P. M. Shrestha, H. S. Weber, O. L. O. Snoeyenbos-West, P. O. J. Hal, H. H. Richnow, and N. Musat, et al. 2018. Conductive particles enablesyntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. mBio 9:e00226–18. doi:10.1128/mBio.00226-18.
  • Rouf, M. A., and R. F. Lomprey Jr. 1968. Degradation of uric acid by certain aerobic bacteria. Journal of Bacteriology 96:617–22. doi:10.1128/JB.96.3.617-622.1968.
  • Rutter, N., A. Hodson, T. Irvine-Fynn, and M. K. Solås. 2011. Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard. Journal of Hydrology 410 (1–2):39–50. doi:10.1016/j.jhydrol.2011.09.001.
  • Schostag, M., M. Stibal, C. S. Jacobsen, J. Bælum, N. Taş, and B. Elberling. 2015. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Frontiers in Microbiology: 6. doi:10.3389/fmicb.2015.00399.
  • Schuur, E. A. G., J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, and H. Lee. 2008. Vulnerability of Permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 58 (8):701. doi:10.1641/b580807.
  • Schuur, E. A. G., A. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, and D. M. Lawrence. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–79. doi:10.1038/nature14338.
  • Shelobolina, E. S., K. P. Nevin, J. D. Blakeney-Hayward, C. V. Johnsen, T. W. Plaia, P. Krader, T. Woodard, et al. 2007. Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. International Journal of Systematic and Evolutionary Microbiology 57 (1):126–35. doi:10.1099/ijs.0.64221-0.
  • Skidmore, M., S. P. Anderson, M. Sharp, J. Foght, and B. D. Lanoil. 2005. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Applied and Environmental Microbiology 71 (11):6986–97. doi:10.1128/AEM.71.11.6986–6997.2005.
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, and M. Tignor, 2007: Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.
  • Starnawski, P., T. Bataillon, T. J. G. Ettema, L. M. Jochum, L. Schreiber, X. Chen, M. A. Lever, et al. 2017. Microbial community assembly and evolution in subseafloor sediment. Proceedings of the National Academy of Sciences 114 (11):2940–45. doi:10.1073/pnas.1614190114.
  • Stolz, J. F., and R. S. Oremland. 2011. Microbial metal and metalloid metabolism: Advances and applications. Washington, DC: American Society for Microbiology.
  • Streletskiy, D. A., A. B. Sherstiukov, O. W. Frauenfeld, and F. E. Nelson. 2015. Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environmental Research Letters 10. doi:10.1088/1748-9326/10/12/125005.
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23:2. doi:10.1029/2008gb003327.
  • Tveit, A., R. Schwacke, M. M. Svenning, and T. Urich. 2013. Organic carbon transformations in high-Arctic peat soils: Key functions and microorganisms. The ISME Journal 7 (2):299–311. doi:10.1038/ismej.2012.99.
  • Vincent, W. F., L. G. Whyte, C. Lovejoy, C. W. Greer, I. Laurion, C. A. Suttle, J. Corbeil, and D. R. Mueller. 2009. Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Science 3:171–80. doi:10.1016/j.polar.2009.05.004.
  • Vishnivetskaya, T. A., A. C. Layton, M. C. Y. Lau, A. Chauhan, K. R. Cheng, and A. J. Meyers. 2014. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiology Ecology 84:217–30. doi:10.1111/1574-6941.12219.
  • Voigt, C., M. E. Marushchak, R. E. Lamprecht, M. Jakowicz- Korczynski, A. Lindgren, M. Mastepanov, L. Granlund, T. R. Christensen, T. Tahvanainen, P. J. Martikainen, and C. Baisi. 2017. Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proceedings of the National Academy of Sciences 114 (24):6238–43. doi:10.1073/pnas.1702902114.
  • Wagner, D., A. Gattinger, A. Embacher, E.-M. Pfeiffer, M. Schloter, and A. Lipski. 2007. Methanogenic activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic and its implication for the global methane budget. Global Change Biology 13 (5):1089–99. doi:10.1111/j.1365-2486.2007.01331.x.
  • Waldrop, M. P., K. P. Wickland, R. White III, A. A. Berhe, J. W. Harden, and V. E. Romanovsky. 2010. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils. Global Change Biology 16 (9):2543–54. doi:10.1111/j.1365-2486.2009.02141.x.
  • Walter, K. M., S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin III. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi:10.1038/nature05040.
  • Walz, J., C. Knoblauch, L. Böhmne, and E.-M. Pfeiffer. 2017. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils - Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biology and Biochemistry 110:34–43. doi:10.1016/j.soilbio.2017.03.001.
  • Weber, F.-A., A. F. Hofacker, A. Voegelin, and R. Kretzschmar. 2010. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental Science & Technology 44 (1):116–22. doi:10.1021/es902100h.
  • Whaley, D., M. Leinen, and K. Whilden. 2009. Ocean iron fertilization: Recent results, estimates of potential, and economic considerations. IOP Conference Series: Earth and Environmental Science 6 (16):162011. doi:10.1088/1755-1307/6/6/162011.
  • Wild, B., J. Schnecker, R. J. E. Alves, P. Barsukov, J. Bárta, P. Čapek, and N. Gentsch, et al. 2014. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in Arctic permafrost soil. Soil Biology and Biochemistry 75:143–51. doi:10.1016/j.soilbio.2014.04.014.
  • Wilhelm, R. C., T. D. Niederberger, C. Greer, and L. G. Whyte. 2011. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Canadian Journal of Microbiology 57 (4):303–15. doi:10.1139/W11-004.
  • Winkel, M., J. Mitzcherling, P. P. Overduin, F. Horn, M. Winterfeld, R. Rijkers, M. N. Grigoriev, C. Knoblauch, K. Mangelsdorf, D. Wagner, and S. Liebner. 2018. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Scientific Reports 8:1291. doi:10.1038/s41598-018-19505-9.
  • Yang, Z., S. Yang, J. D. Van Nostrand, J. Zhou, W. Fang, Q. Qi, and Y. Liu et al. 2017. Microbial community and functional gene changes in Arctic tundra soils in a microcosm warming experiment. Frontiers in Microbiology 8:1741. doi:10.3389/fmicb.2017.01741.
  • Yde, J. C., M. Riger-Kusk, H. H. Christensen, N. T. Knudsen, and O. Humlum. 2008. Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. Journal of Glaciology 54 (185):259–72. doi:10.3189/002214308784886234.
  • Yde, J. C., K. W. Finster, R. Raiswell, J. P. Steffensen, J. Heinemeier, and J. Olsen. 2010. Basal ice microbiology at the margin of the Greenland ice sheet. Annals of Glaciology 51:71–79. doi:10.3189/172756411795931976.
  • Yergeau, E., H. Hogues, L. G. Whyte, and C. W. Greer. 2010. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. The ISME Journal 4:1206–14. doi:10.1038/ismej.2010.4.