2,405
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tundra shrub expansion in a warming climate and the influence of data type on models of habitat suitability

, &
Pages 488-506 | Received 13 May 2022, Accepted 01 Sep 2022, Published online: 12 Oct 2022

References

  • Ackerman, D., D. Griffin, S. E. Hobbie, and J. C. Finlay. 2017. Arctic shrub growth trajectories differ across soil moisture levels. Global Change Biology 23 (10):4294–302. doi:10.1111/gcb.13677.
  • Aiken, S., M. Dallwitz, L. Consaul, C. Mcjannet, G. Boles, G. Argus, J. Gillett, P. Scott, R. Elven, M. Leblanc, et al. 2007. Flora of the Canadian Arctic archipelago. Ottawa: NRC Research Press.
  • Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43 (6):1223–32. doi:10.1111/j.1365-2664.2006.01214.x.
  • Angers-Blondin, S., I. H. Myers-Smith, and S. Boudreau. 2018. Plant–plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biology 41 (11):2211–19. doi:10.1007/s00300-018-2355-9.
  • Barbet‐Massin, M., F. Jiguet, C. H. Albert, and W. Thuiller. 2012. Selecting pseudo‐absences for species distribution models: How, where and how many? Methods in Ecology and Evolution 3 (2):327–38. doi:10.1111/j.2041-210X.2011.00172.x.
  • Barbet-Massin, M., Q. Rome, C. Villemant, and F. Courchamp. 2018. Can species distribution models really predict the expansion of invasive species? Plos One 13 (3):e0193085. doi:10.1371/journal.pone.0193085.
  • Bjorkman, A. D., M. G. Criado, I. H. Myers-Smith, V. Ravolainen, I. S. Jónsdóttir, K. B. Westergaard, J. P. Lawler, M. Aronsson, B. Bennett, and H. Gardfjell. 2020. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49 (3):678–92. doi:10.1007/s13280-019-01161-6.
  • Bjorkman, A. D., I. H. Myers-Smith, S. C. Elmendorf, S. Normand, N. Rüger, P. S. Beck, A. Blach-Overgaard, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562 (7725):57–62. doi:10.1038/s41586-018-0563-7.
  • Black, K. L., C. A. Wallace, and J. L. Baltzer. 2021. Seasonal thaw and landscape position determine foliar functional traits and whole-plant water use in tall shrubs on the low Arctic tundra. New Phytologist 231 (1):94–107. doi:10.1111/nph.17375.
  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson. 2003. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology 9 (11):1543–66. doi:10.1046/j.1365-2486.2003.00681.x.
  • Breiner, F. T., A. Guisan, M. P. Nobis, and A. Bergamini. 2017. Including environmental niche information to improve IUCN Red List assessments. Diversity and Distributions 23 (5):484–95. doi:10.1111/ddi.12545.
  • Bret‐Harte, M. S., G. R. Shaver, and F. S. Chapin. 2002. Primary and secondary stem growth in Arctic shrubs: Implications for community response to environmental change. Journal of Ecology 90 (2):251–67. doi:10.1046/j.1365-2745.2001.00657.x.
  • Brotons, L., W. Thuiller, M. B. Araújo, and A. H. Hirzel. 2004. Presence‐absence versus presence‐only modelling methods for predicting bird habitat suitability. Ecography 27 (4):437–48. doi:10.1111/j.0906-7590.2004.03764.x.
  • Burn, C. R., and S. Kokelj. 2009. The environment and permafrost of the Mackenzie Delta area. Permafrost and Periglacial Processes 20 (2):83–105. doi:10.1002/ppp.655.
  • Cameron, E. A., and T. C. Lantz. 2016. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories, Canada. Environmental Research Letters 11 (4):045006. doi:10.1088/1748-9326/11/4/045006.
  • Campbell, T. K. F., T. C. Lantz, R. H. Fraser, and D. Hogan. 2021. High Arctic vegetation change mediated by hydrological conditions. Ecosystems 24 (1):106–21. doi:10.1007/s10021-020-00506-7.
  • Chapin, F. S., M. S. Bret-Harte, S. E. Hobbie, and H. Zhong. 1996. Plant functional types as predictors of transient responses of Arctic vegetation to global change. Journal of Vegetation Science 7 (3):347–58. doi:10.2307/3236278.
  • Chen, A. 2020. The effects of climate change and fire on tundra vegetation change in the western Canadian Arctic. MSc Thesis, University of Victoria.
  • Chen, Y., F. S. Hu, and M. J. Lara. 2021. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Global Change Biology 27 (3):652–63. doi:10.1111/gcb.15451.
  • Chen, A., T. C. Lantz, T. Hermosilla, and M. A. Wulder. 2021. Biophysical controls of increased tundra productivity in the western Canadian Arctic. Remote Sensing of Environment 258:112358. doi:10.1016/j.rse.2021.112358.
  • De Groot, W., P. Thomas, and R. W. Wein. 1997. Betula nana L. and Betula glandulosa Michx. Journal of Ecology 85 (2):241–64. doi:10.2307/2960655.
  • Druel, A., P. Ciais, G. Krinner, and P. Peylin. 2019. Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model. Journal of Advances in Modeling Earth Systems 11 (7):2020–35. doi:10.1029/2018MS001531.
  • Ecosystem Classification Group. 2012. Ecological regions of the Northwest Territories, Southern Arctic. Yellowknife, NT: Department of Environment and Natural Resources, Government of Northwest Territories.
  • Ehlers, L., G. Coulombe, J. Herriges, T. Bentzen, M. Suitor, K. Joly, and M. Hebblewhite. 2021. Critical summer foraging tradeoffs in a subarctic ungulate. Ecology and Evolution 11 (24):17835–72. doi:10.1002/ece3.8349.
  • Elith, J., H. Graham, C. P. Anderson, R. Dudík, M. Ferrier, S. Guisan, A. J. Hijmans, R. Huettmann, F. R. Leathwick, J. Lehmann, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 (2):129–51. doi:10.1111/j.2006.0906-7590.04596.x.
  • Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, and C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17 (1):43–57. doi:10.1111/j.1472-4642.2010.00725.x.
  • Elmendorf, S. C., G. H. Henry, R. D. Hollister, R. G. Björk, N. Boulanger-Lapointe, E. J. Cooper, J. H. Cornelissen, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2 (6):453–57. doi:10.1038/nclimate1465.
  • Epstein, H. E., M. P. Calef, M. D. Walker, F. S. Chapin, and A. M. Starfield. 2004. Detecting changes in Arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology 10 (8):1325–34. doi:10.1111/j.1529-8817.2003.00810.x.
  • Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12):4302–15. doi:10.1002/joc.5086.
  • Fournier, A., M. Barbet-Massin, Q. Rome, and F. Courchamp. 2017. Predicting species distribution combining multi-scale drivers. Global Ecology and Conservation 12:215–26. doi:10.1016/j.gecco.2017.11.002.
  • Fraser, R. H., T. C. Lantz, I. Olthof, S. V. Kokelj, and R. A. Sims. 2014. Warming-induced shrub expansion and lichen decline in the Western Canadian Arctic. Ecosystems 17 (7):1151–68. doi:10.1007/s10021-014-9783-3.
  • Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20 (4):1264–77. doi:10.1111/gcb.12406.
  • Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina. 2013. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters 8 (1):015035. doi:10.1088/1748-9326/8/1/015035.
  • Furlow, J. J. 1979. The systematics of the American species of Alnus (Betulaceae). Rhodora 81:1–121.
  • Furlow, J. J. 1997. Alnus alnobetula. In Flora of North America North of Mexico, Flora of North America Editorial Committee, eds. New York: Oxford University Press.
  • Gamon, J. A., K. F. Huemmrich, R. S. Stone, and C. E. Tweedie. 2013. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt. Remote Sensing of Environment 129:144–53. doi:10.1016/j.rse.2012.10.030.
  • Gill, D. 1972. The point bar environment in the Mackenzie River Delta. Canadian Journal of Earth Sciences 9 (11):1382–93. doi:10.1139/e72-125.
  • Gill, D. 1973. Floristics of a plant succession sequence in the Mackenzie Delta, Northwest Territories. Polarforschung 43:55–65.
  • Gill, H. K., T. C. Lantz, B. O’neill, and S. V. Kokelj. 2014. Cumulative impacts and feedbacks of a gravel road on shrub tundra ecosystems in the Peel Plateau, Northwest Territories, Canada. Arctic, Antarctic, and Alpine Research 46 (4):947–61. doi:10.1657/1938-4246-46.4.947.
  • Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. Mcdonald-Madden, C. Mantyka-Pringle, et al. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16 (12):1424–35. doi:10.1111/ele.12189.
  • Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135 (2–3):147–86. doi:10.1016/S0304-3800(00)00354-9.
  • Hao, T., J. Elith, J. J. Lahoz-Monfort, and G. Guillera-Arroita. 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43 (4):549–58. doi:10.1111/ecog.04890.
  • Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15):1965–78. doi:10.1002/joc.1276.
  • Huebner, D. C., A. Buchwal, and M. S. Bret-Harte. 2022. Retrogressive thaw slumps in the Alaskan Low Arctic may influence tundra shrub growth more strongly than climate. Ecosphere 13 (6):e4106. doi:10.1002/ecs2.4106.
  • Intergovernmental Panel on Climate Change. 2019. IPCC special report on the ocean and cryosphere in a changing climate. [ H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)].
  • Jacquemart, A.-L. 1996. Vaccinium Uliginosum L. Journal of Ecology 84 (5):771–85. doi:10.2307/2261339.
  • Jessop, A. M. 1971. The distribution of glacial perturbation of heat flow in Canada. Canadian Journal of Earth Sciences 8 (1):162–66. doi:10.1139/e71-012.
  • Joly, K., R. R. Jandt, C. R. Meyers, and M. J. Cole. 2007. Changes in vegetative cover on Western Arctic Herd winter range from 1981 to 2005: Potential effects of grazing and climate change. Rangifer 27 (4):199–207. doi:10.7557/2.27.4.345.
  • Jørgensen, R. H., H. Meilby, and J. Kollmann. 2013. Shrub expansion in SW Greenland under modest regional warming: disentangling effects of human disturbance and grazing. Arctic, Antarctic, and Alpine Research 45 (4):515–25. doi:10.1657/1938-4246-45.4.515.
  • Kaky, E., V. Nolan, A. Alatawi, and F. Gilbert. 2020. A comparison between ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics 60:101150. doi:10.1016/j.ecoinf.2020.101150.
  • Kindt, R., and R. Coe. 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. In ICRAF, ed. World Agroforestry Centre, 2.123 ed. C, 2.123 ed. Nairobi, Kenya.
  • Kokelj, S. V., J. Tunnicliffe, D. Lacelle, T. C. Lantz, K. S. Chin, and R. Fraser. 2015. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global and Planetary Change 129:56–68.
  • Kruse, S., M. Wieczorek, F. Jeltsch, and U. Herzschuh. 2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecological Modelling 338:101–21. doi:10.1016/j.ecolmodel.2016.08.003.
  • Lantz, T. C., S. E. Gergel, and G. H. R. Henry. 2010. Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada. Journal of Biogeography 37:1597–610.
  • Lantz, T. C., S. V. Kokelj, S. E. Gergel, and G. H. R. Henry. 2009. Relative impacts of disturbance and temperature: Persistent changes in microenvironment and vegetation in retrogressive thaw slumps. Global Change Biology 15 (7):1664–75. doi:10.1111/j.1365-2486.2009.01917.x.
  • Lantz, T. C., P. Marsh, and S. V. Kokelj. 2013. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16 (1):47–59. doi:10.1007/s10021-012-9595-2.
  • Lantz, T. C., Y. Zhang, and S. V. Kokelj. 2022. Impacts of ecological succession and climate warming on permafrost aggradation in drained lake basins of the Tuktoyaktuk Coastlands, Northwest Territories, Canada. Permafrost and Periglacial Processes 33 (2):176–92. doi:10.1002/ppp.2143.
  • Larking, T., E. Davis, R. Way, L. Hermanutz, and A. Trant. 2021. Recent greening driven by species-specific shrub growth characteristics in Nunatsiavut, Labrador, Canada. Arctic Science 7 (4): 784–797. doi:10.1139/as-2020-0031.
  • Lee, C. K., P. H. Williams, and R. G. Pearson. 2019. Climate change vulnerability higher in Arctic than alpine bumblebees. Frontiers of Biogeography 11 (4). doi:10.21425/F5FBG42455.
  • Leroy, B., R. Delsol, B. Hugueny, C. N. Meynard, C. Barhoumi, M. Barbet-Massin, and C. Bellard. 2018. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. Journal of Biogeography 45:1994–2002.
  • Marcer, A., L. Sáez, R. Molowny-Horas, X. Pons, and J. Pino. 2013. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation 166:221–30. doi:10.1016/j.biocon.2013.07.001.
  • Marmion, M., M. Parviainen, M. Luoto, R. K. Heikkinen, and W. Thuiller. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15:59–69.
  • Martin, A. C., E. S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias-Fauria. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environmental Research Letters 12:085007.
  • McGuire, A. D., F. S. Chapin, J. E. Walsh, and C. Wirth. 2006. Integrated regional changes in Arctic climate feedbacks: Implications for the global climate system. Annual Review of Environment and Resources 31 (1):61–91. doi:10.1146/annurev.energy.31.020105.100253.
  • Mekonnen, Z. A., W. J. Riley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahana, A. L. Breen, I. H. Myers-Smith, M. G. Criado, Y. Liu, et al. 2021. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16:053001.
  • Mekonnen, Z. A., W. J. Riley, R. F. Grant, V. G. Salmon, C. M. Iversen, S. C. Biraud, A. L. Breen, and M. J. Lara. 2021. Topographical controls on hillslope‐scale hydrology drive shrub distributions on the Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 126:e2020JG005823.
  • Milbau, A., B. J. Graae, A. Shevtsova, and I. Nijs. 2009. Effects of a warmer climate on seed germination in the subarctic. Annals of Botany 104 (2):287–96. doi:10.1093/aob/mcp117.
  • Moffat, N. D., T. C. Lantz, R. H. Fraser, and I. Olthof. 2016. Recent vegetation change (1980–2013) in the tundra ecosystems of the Tuktoyaktuk Coastlands, NWT, Canada. Arctic, Antarctic, and Alpine Research 48:581–97.
  • Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. Van Vuuren, T. R. Carter, S. Emori, M. Kainuma, and T. Kram. 2010. The next generation of scenarios for climate change research and assessment. Nature 463 (7282):747–56. doi:10.1038/nature08823.
  • Myers-Smith, I. H., S. C. Elmendorf, P. S. Beck, M. Wilmking, M. Hallinger, D. Blok, K. D. Tape, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5 (9):887–91. doi:10.1038/nclimate2697.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. Macias-Fauria, U. Sass-Klaassen, and E. Lévesque. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6 (4):045509. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., and D. S. Hik. 2018. Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106 (2):547–60. doi:10.1111/1365-2745.12817.
  • O’Donnell, M. S., and D. A. Ignizio. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691:4–9.
  • Ovaskainen, O., and N. Abrego. 2020. Joint species distribution modelling: With applications in R. Cambridge: Cambridge University Press.
  • Pearce, C. 1986. The distribution and ecology of the shoreline vegetation on the Mackenzie Delta, NWT. PhD Dissertation, University of Calgary.
  • Pearce, J. L., and M. S. Boyce. 2006. Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43 (3):405–12. doi:10.1111/j.1365-2664.2005.01112.x.
  • Pěknicová, J., and K. Berchová-Bímová. 2016. Application of species distribution models for protected areas threatened by invasive plants. Journal for Nature Conservation 34:1–7. doi:10.1016/j.jnc.2016.08.004.
  • Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3–4):231–59. doi:10.1016/j.ecolmodel.2005.03.026.
  • Phillips, S. J., M. Dudík, J. Elith, C. H. Graham, A. Lehmann, J. Leathwick, and S. Ferrier. 2009. Sample selection bias and presence‐only distribution models: Implications for background and pseudo‐absence data. Ecological Applications 19 (1):181–97. doi:10.1890/07-2153.1.
  • Port, U., V. Brovkin, and M. Claussen. 2012. The influence of vegetation dynamics on anthropogenic climate change. Earth System Dynamics 3 (2):233–43. doi:10.5194/esd-3-233-2012.
  • Porter, C., P. Morin, I. Howat, M. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, et al. 2018. Arctic DEM. 3 ed. Harvard Dataverse, V3.0. doi:10.7910/DVN/OHHUKH.
  • Quillet, A., C. Peng, and M. Garneau. 2010. Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environmental Reviews 18:333–53. doi:10.1139/A10-016.
  • Rampton, V. 1982. Quaternary geology of the Yukon Coastal Plain. Ottawa, Ontario: Geological Survey of Canada.
  • Rampton, V. 1988. Quaternary geology of the Tuktoyaktuk Coastlands, Northwest Territories. Ottawa, Ontario: Geological Survey of Canada.
  • R Core Team. 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Renne, R. R., J. B. Bradford, I. C. Burke, and W. K. Lauenroth. 2019. Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe. Ecology 100 (11):e02824. doi:10.1002/ecy.2824.
  • Ropars, P., and S. Boudreau. 2012. Shrub expansion at the forest–tundra ecotone: Spatial heterogeneity linked to local topography. Environmental Research Letters 7 (1):015501. doi:10.1088/1748-9326/7/1/015501.
  • Saarela, J. M., P. C. Sokoloff, and R. D. Bull. 2017. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): An annotated checklist of an Arctic flora. PeerJ 5:e2835. doi:10.7717/peerj.2835.
  • Saarela, J. M., P. C. Sokoloff, L. J. Gillespie, R. D. BULL, B. A. Bennett, and S. Ponomarenko. 2020. Vascular plants of Victoria Island (Northwest Territories and Nunavut, Canada): A specimen-based study of an Arctic flora. PhytoKeys 141:1–330. doi:10.3897/phytokeys.141.48810.
  • Santini, L., A. Benítez-López, L. Maiorano, M. Čengić, and M. A. J. Huijbregts. 2021. Assessing the reliability of species distribution projections in climate change research. Diversity and Distributions 27 (6):1035–50. doi:10.1111/ddi.13252.
  • Sappington, J. M., K. M. Longshore, and D. B. Thompson. 2007. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. The Journal of Wildlife Management 71 (5):1419–26. doi:10.2193/2005-723.
  • Scoggan, H. J. 1979. The flora of Canada. Ottawa, Canada: National Museum of Natural Sciences.
  • Segurado, P., and M. B. Araújo. 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31 (10):1555–68. doi:10.1111/j.1365-2699.2004.01076.x.
  • Seider, J. H., T. C. Lantz, T. Hermosilla, M. A. Wulder, and J. A. Wang. 2022. Biophysical determinants of shifting tundra vegetation productivity in the Beaufort Delta region of Canada. Ecosystems. doi:10.1007/s10021-021-00725-6.
  • Shevtsova, A., E. Haukioja, and A. Ojala. 1997. Growth response of subarctic dwarf shrubs, empetrum nigrum and vaccinium vitis-idaea, to manipulated environmental conditions and species removal. Oikos 78 (3):440–58. doi:10.2307/3545606.
  • Shipman, N. 2021. Summer 2019 vegetation monitoring in the Mackenzie Delta, NWT. Unpublished data.
  • Soberón, J., and M. Nakamura. 2009. Niches and distributional areas: Concepts, methods, and assumptions. Proceedings of the National Academy of Sciences 106 (supplement_2):19644. doi:10.1073/pnas.0901637106.
  • Steedman, A. E. 2014. The ecology and dynamics of ice wedge degradation in high-centre polygonal terrain in the uplands of the Mackenzie Delta region, Northwest Territories. MSc Thesis, University of Victoria.
  • Svenning, J. C., and B. Sandel. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100 (7):1266–86. doi:10.3732/ajb.1200469.
  • Tape, K. D., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan‐Arctic. Global Change Biology 12 (4):686–702. doi:10.1111/j.1365-2486.2006.01128.x.
  • Taulavuori, K., K. Laine, and E. Taulavuori. 2013. Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: A review. Environmental and Experimental Botany 87:191–96. doi:10.1016/j.envexpbot.2012.10.002.
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93 (4):485–98. doi:10.1175/BAMS-D-11-00094.1.
  • Thuiller, W., D. Georges, M. Gueguen, R. Engler, F. Breiner, and B. Lafourcade. 2022. Biomod2: Ensemble platform for species distribution modeling. R package version 4.0.
  • Travers‐Smith, H. Z., and T. C. Lantz. 2020. Leading‐edge disequilibrium in alder and spruce populations across the forest–tundra ecotone. Ecosphere 11 (7):e03118. doi:10.1002/ecs2.3118.
  • Travers-Smith, H. Z., T. C. Lantz, and R. H. Fraser. 2021. Surface water dynamics and rapid lake drainage in the Western Canadian Subarctic (1985–2020). Journal of Geophysical Research: Biogeosciences 126:e2021JG006445.
  • van Bodegom, P. M., J. C. Douma, J. P. M. Witte, J. C. Ordoñez, R. P. Bartholomeus, and R. Aerts. 2012. Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: Exploring the merits of traits-based approaches. Global Ecology and Biogeography 21 (6):625–36. doi:10.1111/j.1466-8238.2011.00717.x.
  • Vanderwal, J., L. P. Shoo, C. Graham, and S. E. Williams. 2009. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecological Modelling 220 (4):589–94. doi:10.1016/j.ecolmodel.2008.11.010.
  • Vincent, L., X. Zhang, R. Brown, Y. Feng, E. Mekis, E. Milewska, H. Wan, and X. Wang. 2015. Observed trends in Canada’s climate and influence of low-frequency variability modes. Journal of Climate 28 (11):4545–60. doi:10.1175/JCLI-D-14-00697.1.
  • Walker, M. D., C. H. Wahren, R. D. Hollister, G. H. Henry, L. E. Ahlquist, J. M. Alatalo, M. S. Bret-Harte, M. P. Calef, T. V. Callaghan, and A. B. Carroll. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences 103:1342–46. doi:10.1073/pnas.0503198103.
  • Wang, J. A., D. Sulla‐menashe, C. E. Woodcock, O. Sonnentag, R. F. Keeling, and M. A. Friedl. 2020. Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology 26 (2):807–22. doi:10.1111/gcb.14804.
  • Wang, J. A., D. Sulla-Menashe, C. E. Woodcock, O. Sonnentag, R. Keeling, and M. Friedl. 2019. ABoVE: Landsat-derived annual dominant land cover across ABoVE core domain, 1984-2014. Oak Ridge, TN: ORNL DAAC.
  • Wang, H.-H., C. L. Wonkka, M. L. Treglia, W. E. Grant, F. E. Smeins, and W. E. Rogers. 2015. Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants 7:plv039. doi:10.1093/aobpla/plv039.
  • Wildlife Management Advisory Council, North Slope & Aklavik Hunters and Trappers Committee. 2018. Yukon North Slope Inuvialuit traditional use study. Whitehorse, YK: Wildlife Management and Advisory Council (North Slope).
  • Wisz, M. S., and A. Guisan. 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology 9 (1):8. doi:10.1186/1472-6785-9-8.
  • Wolter, J., H. Lantuit, M. Fritz, M. Macias-Fauria, I. Myers-Smith, and U. Herzschuh. 2016. Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation. Polar Research 35 (1):27489. doi:10.3402/polar.v35.27489.
  • Wullschleger, S. D., H. E. Epstein, E. O. Box, E. S. Euskirchen, S. Goswami, C. M. Iversen, J. Kattge, R. J. Norby, P. M. Van Bodegom, and X. Xu. 2014. Plant functional types in Earth system models: Past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany 114 (1):1–16. doi:10.1093/aob/mcu077.
  • Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O’loughlin, J. C. Neal, C. C. Sampson, S. Kanae, and P. D. Bates. 2017. A high-accuracy map of global terrain elevations. Geophysical Research Letters 44 (11):5844–53. doi:10.1002/2017GL072874.
  • Yukon Ecoregions Working Group. 2004. Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes. PARC Technical Bulletin.
  • Yukon Territorial Government. 2021. Yukon biophysical inventory system. Online data repository. Geomatics Yukon. https://apps.gov.yk.ca/yeis-biophys.
  • Zhang, Z., S. Xu, C. Capinha, R. Weterings, and T. Gao. 2019. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators 104:333–40. doi:10.1016/j.ecolind.2019.05.023.