1,758
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lowland tundra plant stoichiometry is somewhat resilient decades following fire despite substantial and sustained shifts in community structure

ORCID Icon, , &
Pages 525-536 | Received 09 Feb 2022, Accepted 01 Sep 2022, Published online: 20 Oct 2022

References

  • Abbott, B. W., A. V. Rocha, A. Shogren, J. P. Zarnetske, F. Iannucci, W. B. Bowden, S. P. Bratsman, L. Patch, R. Watts, R. Fulweber, et al. 2021. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic. Global Change Biology 27 (7):1408–30. doi:10.1111/gcb.15507.
  • Alaska Interagency Coordination Center. n.d. Predictive services – maps/imagery/geospatial. https://fire.ak.blm.gov/predsvcs/maps.php
  • Barrett, K., A. V. Rocha, M. J. van de Weg, and G. Shaver. 2012. Vegetation shifts observed in Arctic tundra 17 years after fire. Remote Sensing Letters 3 (8):729–36. doi:10.1080/2150704X.2012.676741.
  • Bret-Harte, M. S., M. C. Mack, G. R. Shaver, D. C. Huebner, M. Johnston, C. A. Mojica, C. Pizano, and J. A. Reiskind. 2013. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philosophical Transactions of the Royal Society B: Biological Sciences 368 (1624):20120490–20120490. doi:10.1098/rstb.2012.0490.
  • Butler, O. M., J. Elser, T. Lewis, B. Mackey, and C. Chen. 2018. The phosphorus-rich signature of fire in the soil-plant system: A global meta-analysis. Ecology Letters 21 (3):335–44. doi:10.1111/ele.12896.
  • Butler, O. M., T. Lewis, M. Rezaei Rashti, S. C. Maunsell, J. J. Elser, and C. Chen. 2019. The stoichiometric legacy of fire regime regulates the roles of micro-organisms and invertebrates in decomposition. Ecology 100 (7):e02732. doi:10.1002/ecy.2732.
  • Chapin, F. S., S. F. Trainor, O. Huntington, A. L. Lovecraft, E. Zavaleta, D. C. Natcher, A. D. McGuire, J. L. Nelson, L. Ray, M. Calef, et al. 2008. Increasing wildfire in Alaska’s boreal forest: Pathways to potential solutions of a wicked problem. BioScience 58 (6):531–40. doi:10.1641/B580609.
  • De Baets, S., M. J. van de Weg, R. Lewis, N. Steinberg, J. Meersmans, T. A. Quine, G. R. Shaver, and I. P. Hartley. 2016. Investigating the controls on soil organic matter decomposition in tussock tundra soil and permafrost after fire. Soil Biology and Biochemistry 99:108–16. doi:10.1016/j.soilbio.2016.04.020.
  • Dijkstra, F. A., and M. A. Adams. 2015. Fire eases imbalances of nitrogen and phosphorus in woody plants. Ecosystems 18 (5):769–79. doi:10.1007/s10021-015-9861-1.
  • Farukh, M. A., and H. Hayasaka. 2012. Active forest fire occurrences in severe lightning years in Alaska. Journal of Natural Disaster Science 33 (2):71–84. doi:10.2328/jnds.33.71.
  • Flexas, J., and M. Carriquí. 2020. Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: Lessons for improving crop photosynthesis. The Plant Journal 101 (4):964–78. doi:10.1111/tpj.14651.
  • French, N. H. F., L. K. Jenkins, T. V. Loboda, M. Flannigan, R. Jandt, L. L. Bourgeau-Chavez, and M. Whitley. 2015. Fire in Arctic tundra of Alaska: Past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire 24 (8):1045. doi:10.1071/WF14167.
  • Frost, G. V., R. A. Loehman, L. B. Saperstein, M. J. Macander, P. R. Nelson, D. P. Paradis, and S. M. Natali. 2020. Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environmental Research Letters 15 (2):025003. doi:10.1088/1748-9326/ab5f49.
  • Gaglioti, B. V., L. T. Berner, B. M. Jones, K. M. Orndahl, A. P. Williams, L. Andreu‐Hayles, R. D. D’Arrigo, S. J. Goetz, and D. H. Mann. 2021. Tussocks enduring or shrubs greening: alternate responses to changing fire regimes in the Noatak River Valley, Alaska. Journal of Geophysical Research: Biogeosciences 126 (4):e2020JG006009. doi:10.1029/2020JG006009.
  • Heim, R. J., A. Bucharova, L. Brodt, J. Kamp, D. Rieker, A. V. Soromotin, A. Yurtaev, and N. Hölzel. 2021. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years. The Science of the Total Environment 760:143425. doi:10.1016/j.scitotenv.2020.143425.
  • Heim, R. J., A. Yurtaev, A. Bucharova, W. Heim, V. Kutskir, K.-H. Knorr, C. Lampei, A. Pechkin, D. Schilling, F. Sulkarnaev, et al. 2021. Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks. Biogeosciences Discussions 1–18. doi:10.5194/bg-2021-277.
  • Hewitt, R. E., D. L. Taylor, H. Genet, A. D. McGuire, and M. C. Mack. 2019. Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. Journal of Ecology 107 (2):950–62. doi:10.1111/1365-2745.13062.
  • Higuera, P. E., L. B. Brubaker, P. M. Anderson, T. A. Brown, A. T. Kennedy, and F. S. Hu. 2008. Frequent fires in ancient shrub tundra: Implications of paleorecords for arctic environmental change. Plos One 3 (3):e0001744. doi:10.1371/journal.pone.0001744.
  • Holling, C. S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4 (1):1–23. doi:10.1146/annurev.es.04.110173.000245.
  • Hu, F. S., P. E. Higuera, P. Duffy, M. L. Chipman, A. V. Rocha, A. M. Young, R. Kelly, and M. C. Dietze. 2015. Arctic tundra fires: Natural variability and responses to climate change. Frontiers in Ecology and the Environment 13 (7):369–77. doi:10.1890/150063.
  • Hung, J., S. Natali, N. Baillargeon, S. Sistla, G. Pold et al, 2022. Polaris Project 2018: Vegetation biomass, plot characterization, point intercept, and thaw depth, Yukon-Kuskokwim Delta, Alaska. Arctic Data Center. doi:10.18739/A2D795C0Q.
  • Isles, P. D. F. 2020. The misuse of ratios in ecological stoichiometry. Ecology 101 (11):e03153. doi:10.1002/ecy.3153.
  • Jiang, Y., E. B. Rastetter, A. V. Rocha, A. R. Pearce, B. L. Kwiatkowski, and G. R. Shaver. 2015. Modeling carbon–nutrient interactions during the early recovery of tundra after fire. Ecological Applications 25 (6):1640–52. doi:10.1890/14-1921.1.
  • Jiang, Y., E. B. Rastetter, G. R. Shaver, A. V. Rocha, Q. Zhuang, and B. L. Kwiatkowski. 2017. Modeling long-term changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition. Ecological Applications 27 (1):105–17. doi:10.1002/eap.1413.
  • Joly, K., P. A. Duffy, and T. S. Rupp. 2012. Simulating the effects of climate change on fire regimes in Arctic biomes: Implications for caribou and moose habitat. Ecosphere 3 (5):art36. doi:10.1890/ES12-00012.1.
  • Jones, B. M., A. L. Breen, B. V. Gaglioti, D. H. Mann, A. V. Rocha, G. Grosse, C. D. Arp, M. L. Kunz, and D. A. Walker. 2013. Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research: Biogeosciences 118 (3):1334–44. doi:10.1002/jgrg.20113.
  • Klupar, I., A. V. Rocha, and E. B. Rastetter. 2021. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Global Change Biology 27 (14):3324–35. doi:10.1111/gcb.15646.
  • Lenth, R. V. 2021. emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.1. https://CRAN.R-project.org/package=emmeans
  • Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475 (7357):489–92. doi:10.1038/nature10283.
  • Mack, M. C., E. A. G. Schuur, M. S. Bret-Harte, G. R. Shaver, and F. S. Chapin. 2004. Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431 (7007):440–43. doi:10.1038/nature02887.
  • Narita, K., K. Harada, K. Saito, Y. Sawada, M. Fukuda, and S. Tsuyuzaki. 2015. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arctic, Antarctic, and Alpine Research 47 (3):547–59. doi:10.1657/AAAR0013-031.
  • Partain, J. L., S. Alden, H. Strader, U. S. Bhatt, P. A. Bieniek, B. R. Brettschneider, J. E. Walsh, R. T. Lader, P. Q. Olsson, T. S. Rupp, et al. 2016. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bulletin of the American Meteorological Society 97 (12):S14–S18. doi:10.1175/BAMS-D-16-0149.1.
  • Pellegrini, A. F. A., A. Ahlström, S. E. Hobbie, P. B. Reich, L. P. Nieradzik, A. C. Staver, B. C. Scharenbroch, A. Jumpponen, W. R. L. Anderegg, J. T. Randerson, et al. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553 (7687):194–98. doi:10.1038/nature24668.
  • Pinheiro, J., D. Bates, S. DebRoy, and D. Sarkar, R Core Team. 2021. nlme: Linear and nonlinear mixed effects models. R package version 3. 1–153. https://CRAN.R-project.org/package=nlme
  • Pold, G., B. L. Kwiatkowski, E. B. Rastetter, and S. A. Sistla. 2022. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe–plant–soil model. Soil Biology and Biochemistry 165:108489. doi:10.1016/j.soilbio.2021.108489.
  • Racine, C., R. Jandt, C. Meyers, and J. Dennis. 2004. Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research 36 (1):1–10. doi:10.1657/1523-0430(2004)036[0001:TFAVCA]2.0.CO;2.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Sae-Lim, J., J. M. Russell, R. S. Vachula, R. M. Holmes, P. J. Mann, J. D. Schade, and S. M. Natali. 2019. Temperature-controlled tundra fire severity and frequency during the last millennium in the Yukon-Kuskokwim Delta, Alaska. The Holocene 29 (7):1223–33. doi:10.1177/0959683619838036.
  • Salmon, V. G., P. Soucy, M. Mauritz, G. Celis, S. M. Natali, M. C. Mack, and E. A. G. Schuur. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology 22 (5):1927–41. doi:10.1111/gcb.13204.
  • Sistla, S. A., A. P. Appling, A. M. Lewandowska, B. N. Taylor, and A. A. Wolf. 2015. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124 (7):949–59. doi:10.1111/oik.02385.
  • Sistla, S. A., and J. P. Schimel. 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytologist 196 (1):68–78. doi:10.1111/j.1469-8137.2012.04234.x.
  • Talucci, A. C., M. M. Loranty, and H. D. Alexander. 2022. Siberian taiga and tundra fire regimes from 2001–2020. Environmental Research Letters 17 (2):025001. doi:10.1088/1748-9326/ac3f07.
  • Taylor, P. C., W. Maslowski, J. Perlwitz, D. J. Wuebbles, D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock. 2017. Ch. 11: Arctic changes and their effects on Alaska and the rest of the United States. Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program. doi:10.7930/J00863GK.
  • Toberman, H., C. Chen, T. Lewis, and J. J. Elser. 2014. High-frequency fire alters C: N : P stoichiometry in forest litter. Global Change Biology 20 (7):2321–31. doi:10.1111/gcb.12432.
  • Tsuyuzaki, S., G. Iwahana, and K. Saito. 2018. Tundra fire alters vegetation patterns more than the resultant thermokarst. Polar Biology 41 (4):753–61. doi:10.1007/s00300-017-2236-7.
  • van den Elzen, E., F. Bengtsson, C. Fritz, H. Rydin, and L. P. M. Lamers. 2020. Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS One 15 (2):e0228383. doi:10.1371/journal.pone.0228383.
  • Young, A. M., P. E. Higuera, P. A. Duffy, and F. S. Hu. 2017. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 40 (5):606–17. doi:10.1111/ecog.02205.
  • Zamin, T. J., M. S. Bret-Harte, and P. Grogan. 2014. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low Arctic tundra. Journal of Ecology 102 (3):749–66. doi:10.1111/1365-2745.12237.