1,069
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mass balance, ice volume, and flow velocity of the Vestre Grønfjordbreen (Svalbard) from 2013/14 to 2019/20

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 584-602 | Received 20 Jun 2022, Accepted 17 Nov 2022, Published online: 16 Dec 2022

References

  • Andreassen, L. M., H. Elvehøy, B. Kjøllmoen, and R. V. Engeset. 2016. Reanalysis of long–term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. The Cryosphere 10:535–602. doi:10.5194/tc-10-535-2016.
  • Arntsen, M., A. Sundfjord, R. Skogseth, M. Błaszczyk, and A. Promińska. 2019. Inflow of warm water to the inner Hornsund fjord, Svalbard: Exchange mechanisms and influence on local sea ice cover and glacier front melting. Journal of Geophysical Research—Oceans 124:1915–31. doi:10.1029/2018JC014315.
  • Belart, J. M. C., E. Berthier, E. Magnússon, L. S. Anderson, F. Pálsson, T. Thorsteinsson, I. M. Howat, G. Aðalgeirsdóttir, T. Jóhannesson, and A. H. Jarosch. 2017. Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images. The Cryosphere 11:1501–17. doi:10.5194/tc-11-1501-2017.
  • Bloshkina, E. V., A. K. Pavlov, and K. Filchuk. 2021. Warming of Atlantic Water in three west Spitsbergen fjords: Recent patterns and century-long trends. Polar Research 40:5392. article no. doi:10.33265/polar.v40.5392.
  • Bookstein, F. L. 1989. Principal warps: Thin plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11:567–85. doi:10.1109/34.24792.
  • Chernov, R. A., A. V. Kudikov, T. V. Vshivtseva, and N. I. Osokin. 2019. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg 59 (1):59–66. (In Russian with English title and abstract.). doi:10.15356/2076-6734-2019-1-59-66.
  • Cogley, J. G., R. Hock, L. A. Rasmussen, A. A. Arendt, A. Bauder, R. J. Braithwaite, P. Jansson, G. Kaser, M. Möller, L. Nicholson, et al. 2011. Glossary of glacier mass balance and related terms. IHP-VII. Technical Documents in Hydrology 86. IACS Contribution 2. Paris: United Nations Educational, Scientific and Cultural Organization.
  • Elagina, N., S. Kutuzov, E. Rets, A. Smirnov, R. Chernov, I. Lavrentiev, and B. Mavlyudov. 2021. Mass balance of Austre Grønfjordbreen, Svalbard, 2006–2020, estimated by glaciological, geodetic and modeling aproaches [sic]. Geosciences 11:78. article no. doi:10.3390/geosciences11020078.
  • Fischer, A. 2011. Comparison of direct and geodetic mass balances on a multi-annual time scale. The Cryosphere 5:107–24. doi:10.5194/tc-5-107-2011.
  • Florentine, C., J. Harper, D. Fagre, J. Moore, and E. Peitzsch. 2018. Local topography increasingly influences the mass balance of a retreating cirque glacier. The Cryosphere 12:2109–22. doi:10.5194/tc-12-2109-2018.
  • Førland, E. J., and I. Hanssen–Bauer. 2000. Increased precipitation in the Norwegian Arctic: True or false? Climatic Change 46:485–509. doi:10.1023/A:1005613304674.
  • Fornasini, P. 2008. The uncertainty in physical measurements: An introduction to data analysis in the physics laboratory. Berlin: Springer.
  • Fountain, A. G., and A. Vecchia. 1999. How many stakes are required to measure the mass balance of a glacier? Geografiska Annaler, Series A: Physical Geography 81:563–73. doi:10.1111/1468-0459.00084.
  • Galos, S. P., C. Klug, F. Maussion, F. Covi, L. Nicholson, L. Rieg, W. Gurgiser, T. Mölg, and G. Kaser. 2017. Reanalysis of a 10-year record (2004–2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy. The Cryosphere 11:1417–39. doi:10.5194/tc-11-1417-2017.
  • Gardner, A., G. Moholdt, B. Wouters, G. J. Wolken, D. O. Burgess, M. J. Sharp, J. G. Cogley, C. Braun, and C. Labine. 2011. Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 473:357–60. doi:10.1038/nature10089.
  • Grabiec, M. 2005. An estimation of snow accumulation on Svalbard glaciers on the basis of standard weather-station observations. Annals of Glaciology 42:269–76. doi:10.3189/172756405781812808.
  • Hagen, J. O., and O. Liestøl. 1990. Long-term glacier mass-balance investigations in Svalbard, 1950–1988. Annals of Glaciology 14:102–06. doi:10.3189/S0260305500008351.
  • Höhle, J., and M. Höhle. 2009. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing 64:398–406. doi:10.1016/j.isprsjprs.2009.02.003.
  • Huss, M. 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7:877–87. doi:10.5194/tc-7-877-2013.
  • Isaksen, K., Ø. Nordli, E. J. Førland, E. Łupikasza, S. Eastwood, and T. Niedźwiedź. 2016. Recent warming on Spitsbergen—influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research—Atmospheres 121:11913–31. doi:10.1002/2016JD025606.
  • Kaser, G., A. G. Fountain, and P. Jansson. 2003. A manual for monitoring the mass balance of mountain glaciers with particular attention to low latitude characteristics. Paris: United Nations Educational, Scientific and Cultural Organization.
  • Klug, C., E. Bollmann, S. P. Galos, L. Nicholson, R. Prinz, L. Rieg, R. Sailer, J. Stötter, and G. Kaser. 2018. Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria. The Cryosphere 12:833–49. doi:10.5194/tc-12-833-2018.
  • Kokin, O. V., and A. V. Kirillova. 2017. Reconstruction of Grønfjordbreen dynamics (west Spitsbergen) in the Holocene. Led i Sneg 57 (2):241–52. (In Russian, with English title and summary.). doi:10.15356/2076-6734-2017-2-241-252.
  • König, M., J. Kohler, and C. Nuth. 2013. Glacier area outlines—Svalbard. Tromsø: Norwegian Polar Institute.
  • Kotljakov, V. M., ed. 1985. Glaciology of Spitsbergen. Moscow: Nauka.
  • Lapazaran, J., J. Otero, A. Martín-Español, and F. Navarro. 2016. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journal of Glaciology 62 (236):1008–20. doi:10.1017/jog.2016.93.
  • Lavrentiev, I. I., A. F. Glazovsky, Y. Y. Macheret, V. V. Matskovsky, and A. Y. Muravyev. 2019. Reserves of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades. Led i Sneg 59 (1):23–38. (In Russian, with English title and summary.). doi:10.15356/2076-6734-2019-1-23-38.
  • Lefauconnier, B., and J. Hagen. 1990. Glaciers and climate in Svalbard: Statistical analysis and reconstruction of the Brøggerbreen mass balance for the last 77 years. Annals of Glaciology 14:148–52. doi:10.3189/S0260305500008466.
  • Macheret, Y. Y., A. F. Glazovsky, I. I. Lavrentiev, and I. O. Marchuk. 2019. Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding. Ice and Snow 59 (2):149–66. (In Russian, with English title and summary.). doi:10.15356/20766734-2019-2-430.
  • Martín-Español, A., E. Vasilenko, F. Navarro, J. Otero, J. Lapazaran, I. Lavrentiev, Y. Y. Macheret, and F. Machío. 2013. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard. Annals of Glaciology 54:211–17. doi:10.3189/2013AoG64A109.
  • Mavljudov, B. R., and I. J. Solov’janova. 2007. Vodno–ledovyj balans lednika Al’degonda v 2003/03 balansovom godu.(Water–ice balance of Aldegondabreen glacier during the 2002/03 balance year). Materialy Glatsiologicheskikh Issledovaniy 102:206–08.
  • Möller, M., and J. Kohler. 2018. Differing climatic mass balance evolution across Svalbard glacier regions over 1900–2010. Frontiers in Earth Science 6:128. article no. doi:10.3389/feart.2018.00128.
  • Moore, P. L., L. I. Nelson, and T. M. D. Groth. 2019. Debris properties and mass-balance impacts on adjacent debris-covered glaciers, Mount Rainier, USA. Arctic, Antarctic, and Alpine Research 51:70–83. doi:10.1080/15230430.2019.1582269.
  • Mott, R., I. Stiperski, and L. Nicholson. 2020. Spatio-temporal flow variations driving heat exchange processes at a mountain glacier. The Cryosphere 14:4699–718. doi:10.5194/tc-14-4699-2020.
  • Murray, T., A. Booth, and D. M. Rippin. 2007. Water-content of glacier-ice: Limitations on estimates from velocity analysis of surface ground-penetrating radar surveys. Journal of Environmental and Engineering Geophysics 12:87–99. doi:10.2113/JEEG12.1.87.
  • Navarro, F., and O. Eisen. 2010. Ground-penetrating radar in glaciological applications. In Remote sensing of glaciers: Techniques for topographic, spatial and thematic mapping of glaciers, ed. P. Pellikka and W. G. Reese, 195–229. London: Taylor & Francis.
  • Nilsen, F., R. Skogseth, J. Vaardal-Lunde, and M. Inall. 2016. A simple shelf circulation model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. Journal of Physical Oceanography 46:1209–30. doi:10.1175/JPO-D-15-0058.1.
  • Noël, B., C. L. Jakobs, W. J. J. van Pelt, S. Lhermitte, B. Wouters, J. Kohler, J. O. Hagen, B. Luks, C. H. Reijmer, W. J. van de Berg, et al. 2020. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications 11:4597. article no. doi:10.1038/s41467-020-18356-1.
  • Noh, M., and I. M. Howat. 2015. Automated stereo-photogrammetric DEM generation at high latitudes: Surface extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience and Remote Sensing 52:198–217. doi:10.1080/15481603.2015.1008621.
  • Nordli, Ø., R. Przybylak, A. Ogilvie, and K. Isaksen. 2014. Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898–2012. Polar Research 33:21349. article no. doi:10.3402/polar.v33.21349.
  • Nuth, C., J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson. 2013. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 7:1603–21. doi:10.5194/tc-7-1603-2013.
  • Østrem, G., and M. Brugman. 1991. Glacier mass-balance measurements: A manual for field and office work. NHRI Science Report 4, Saskatoon: National Hydrology Research Institute, Environment Canada.
  • Paul, F., N. Barrand, S. Baumann, E. Berthier, T. Bolch, K. Casey, H. Frey, S. P. Joshi, V. Konovalov, R. Le Bris, et al. 2013. On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology 54:171–82. doi:10.3189/2013AoG63A296.
  • Porter, C., P. Morin, I. Howat, M. J. Noh, B. Bates, K. Peterman, S. Keesey, M. Schlenk, J. Gardiner, K. Tomko, et al. 2018. ArcticDEM., Version 1. Harvard Dataverse, Polar Geospatial Center, University of Minnesota. Accessed May 20, 2020. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH
  • Rolstad, C., T. Haug, and B. Denby. 2009. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. Journal of Glaciology 55:666–80. doi:10.3189/002214309789470950.
  • Schuler, T., J. Kohler, N. Elagina, J. O. Hagen, A. Hodson, J. Jana, A. Kääb, B. Luks, J. Małecki, G. Moholdt, et al. 2020. Reconciling Svalbard glacier mass balance. Frontiers in Earth Science 8:156. article no. doi:10.3389/feart.2020.00156.
  • Sevestre, H., D. I. Benn, N. R. J. Hulton, and K. Bælum. 2015. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journal of Geophysical Research: Earth Surface 120:2220–36. doi:10.1002/2015JF003517.
  • Sidorova, O. R., G. V. Tarasov, S. R. Verkulich, and R. A. Chernov. 2019. Surface ablation variability of mountain glaciers of west Spitsbergen. Arctic and Antarctic Research 65: (In Russian with English title and summary): 438–48. doi:10.30758/0555-2648-2019-65-4-438-448.
  • Skogseth, R., L. L. A. Olivier, F. Nilsen, E. Falck, N. Fraser, V. Tverberg, A. B. Ledang, A. Vader, M. O. Jonassen, J. Søreide, et al. 2020. Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation—an indicator for climate change in the European Arctic. Progress in Oceanography 187:102394. article no. doi:10.1016/J.POCEAN.2020.102394.
  • Solovyanova, I. Y., and B. R. Mavlyudov. 2007. Mass balance observations on some glaciers in 2004/2005 and 2005/2006 balance years, Nordenskiöld Land, Spitsbergen. In The dynamics and mass budget of Arctic glaciers. Extended abstracts. Workshop and GLACIODYN (IPY) Meeting 15-18 January 2007, Pentresina (Switzerland). IASC Working Group on Arctic Glaciology, 115–20. Utrecht: Institute for Marine and Atmospheric Research Utrecht. https://nag.iasc.info/images/publications/abstracts/Book_IASC-NAG2017.pdf
  • Troitsky, L. S., E. M. Singer, V. S. Koryakin, V. A. Markin, and V. I. Mikhailov. 1975. Glaciation of the Spitsbergen (Svalbard): Results of researches of international geophysical projects. Moscow: Nauka.
  • Tsutaki, S., S. Sugiyama, D. Sakakibara, T. Aoki, and M. Niwano. 2017. Surface mass balance, ice velocity and near-surface ice temperature on Qaanaaq Ice Cap, northwestern Greenland, from 2012 to 2016. Annals of Glaciology 58:181–92. doi:10.1017/aog.2017.7.
  • Van Pelt, W. J. J., J. Oerlemans, C. H. Reijmer, V. A. Pohjola, R. Pettersson, and J. H. van Angelen. 2021. Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere 6:641–59. doi:10.5194/tc-6-641-2012.
  • Van Pelt, W., V. Pohjola, R. Pettersson, S. Marchenko, J. Kohler, B. Luks, J. O. Hagen, T. V. Schuler, T. Dunse, B. Noël, et al. 2019. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). The Cryosphere 13:2259–80. doi:10.5194/tc-13-2259-2019.
  • Van Pelt, W., V. Pohjola, and C. Reijmer. 2016. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier. Frontiers in Earth Science 4:2296–6463. doi:10.3389/feart.2016.00102.
  • Wangensteen, B., D. J. Weydahl, and J. O. Hagen. 2005. Mapping glacier velocities on Svalbard using ERS tandem DInSAR data. Norwegian Journal of Geography 59:276–85. doi:10.1080/00291950500375500.
  • WGMS. 2019. Fluctuations of glaciers database. Zurich: World Glacier Monitoring Service.
  • Zemp, M., E. Thibert, M. Huss, D. Stumm, C. Rolstad Denby, C. Nuth, S. U. Nussbaumer, G. Moholdt, A. Mercer, C. Mayer, et al. 2013. Reanalysing glacier mass balance measurement series. The Cryosphere 7:1227–45. doi:10.5194/tc-7-1227-2013.