1,489
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional subsurface architecture and its influence on the spatiotemporal development of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada

ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2167358 | Received 27 Apr 2022, Accepted 08 Jan 2023, Published online: 27 Feb 2023

References

  • AgiSoft PhotoScan Professional. 2016. Version 1.2.6. (Software). St. Petersburg, Russia. http://www.agisoft.com/downloads/installer/.
  • Armstrong, L., D. Lacelle, R. H. Fraser, S. Kokelj, and A. Knudby. 2018. Thaw slump activity measured using stationary cameras in time-lapse and structure-from-motion photogrammetry. Arctic Science 4 (4):827–19. doi:10.1139/as-2018-0016.
  • Bailey, P., J. Wheaton, M. Reimer, and J. Brasington. 2020. Geomorphic Change Detection 7 (Version 7.5.0.0) (Software). doi: 10.5281/zenodo.7248344.
  • Balser, A. W. 2015. Retrogressive thaw slumps and active layer detachment slides in the Brooks Range and Foothills of northern Alaska: Terrain and timing. Fairbanks: University of Alaska, Fairbanks. doi:10.13140/RG.2.1.4497.6160.
  • Balser, A. W., J. B. Jones, and R. Gens. 2014. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. Journal of Geophysical Research: Earth Surface 119 (5):1106–20. doi:10.1002/2013JF002889.
  • Bernhard, P., S. Zwieback, N. Bergner, and I. Hajnsek. 2022. Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic. The Cryosphere 16 (1):1–15. doi:10.5194/tc-16-1-2022.
  • Böhner, J., R. Koethe, O. Conrad, J. Gross, A. Ringeler, and T. Selige. 2002. Soil regionalisation by means of terrain analysis and process parameterisation. In Soil Classification 2001, ed. E. Micheli, F. O. Nachtergaele, R. J. A. Jones and L. Montanarella, 248. Luxembourg: Office for Official Publications of the European Communities.
  • Bröder, L., K. Keskitalo, S. Zolkos, S. Shakil, S. E. Tank, S. V. Kokelj, T. Tesi, B. E. Van Dongen, N. Haghipour, T. I. Eglinton, et al. 2021. Preferential export of permafrost-derived organic matter as retrogressive thaw slumping intensifies. Environmental Research Letters 16 (5):054059. doi:10.1088/1748-9326/abee4b.
  • Brooker, A., R. H. Fraser, I. Olthof, S. V. Kokelj, and D. Lacelle. 2014. Mapping the activity and evolution of retrogressive thaw slumps by tasselled cap trend analysis of a Landsat satellite image stack: Evolution of thaw slumps based on tasselled cap trend analysis. Permafrost and Periglacial Processes 25 (4):243–56. doi:10.1002/ppp.1819.
  • Brosten, T. R., J. H. Bradford, J. P. McNamara, M. N. Gooseff, J. P. Zarnetske, W. B. Bowden, and M. E. Johnston. 2009. Estimating 3D variation in active-layer thickness beneath Arctic streams using ground-penetrating radar. Journal of Hydrology 373 (3–4):479–86. doi:10.1016/j.jhydrol.2009.05.011.
  • Brown, J., F. J. Sidlauskas, and G. Delinski. 1997. Circum-Arctic map of permafrost and ground ice conditions [Map]. The Survey; For sale by Information Services.
  • Campbell, S. W., M. Briggs, S. G. Roy, T. A. Douglas, and S. Saari. 2021. Ground‐penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska. Permafrost and Periglacial Processes 32 (3):407–26. doi:10.1002/ppp.2100.
  • Chen, A., A. D. Parsekian, K. Schaefer, E. Jafarov, S. Panda, L. Liu, T. Zhang, and H. Zebker. 2016. Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics 81 (2):H9–H19. doi:10.1190/geo2015-0124.1.
  • Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8 (7):1991–2007. doi:10.5194/gmd-8-1991-2015.
  • Crites, H., S. V. Kokelj, and D. Lacelle. 2020. Icings and groundwater conditions in permafrost catchments of northwestern Canada. Scientific Reports 10 (1):3283. doi:10.1038/s41598-020-60322-w.
  • Davis, J. L., and A. P. Annan. 1989. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37 (5):531–51. doi:10.1111/j.1365-2478.1989.tb02221.x.
  • Dobiński, W. 2010. Geophysical characteristics of permafrost in the Abisko area, northern Sweden. Polish Polar Research 31 (2):141–58. doi:10.4202/ppres.2010.08.
  • Duk-Rodkin, A. 1992. Surficial geology, Fort McPherson-Bell River, Yukon-Northwest Territories. [Map]. Geological Survey of Canada, Ottawa. doi:10.4095/184002
  • Emmert, A., and C. Kneisel. 2017. Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging. The Cryosphere 11 (2):841–55. doi:10.5194/tc-11-841-2017.
  • Emmert, A., and C. Kneisel. 2021. Internal structure and palsa development at Orravatnsrústir Palsa site (Central Iceland), investigated by means of integrated resistivity and ground‐penetrating radar methods. Permafrost and Periglacial Processes 32 (3):503–19. doi:10.1002/ppp.2106.
  • ESRI Inc. 2018. ArcGis Desktop - ArcMap Version 10.6.1 (Software). Redlands, CA. https://www.esri.com/.
  • Fortier, R., M. Allard, and M.-K. Seguin. 1994. Effect of physical properties of frozen ground on electrical resistivity logging. Cold Regions Science and Technology 22 (4):361–84. doi:10.1016/0165-232X(94)90021-3.
  • Fraser, R., I. Olthof, S. Kokelj, T. Lantz, D. Lacelle, A. Brooker, S. Wolfe, and S. Schwarz. 2014. Detecting landscape changes in high latitude environments using Landsat trend analysis: 1. Visualization. Remote Sensing 6 (11):11533–57. doi:10.3390/rs61111533.
  • French, H. M. (2017). The periglacial environment. 4th ed. Chichester: John Wiley & Sons, Ltd. 10.1002/9781119132820.
  • French, H. M., and P. Egginton. 1973. Thermokarst Development, Banks Island, Western Canadian Arctic. In Permafrost: North American Contribution to the Second International Conference, 203–212. Washington: National Academy of Sciences.
  • Gaffey, C., and A. Bhardwaj. 2020. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sensing 12 (6):948. doi:10.3390/rs12060948.
  • Geotomo Software SDN BHD. 2015. RES2DINVx64 (Version 4.05.41) (Software). Gelugor, Malaysia. http://geotomosoft.com.
  • Geotomo Software SDN BHD. 2016. RES3DINVx64 (Version 3.11.73) (Software). Gelugor, Malaysia. http://geotomosoft.com.
  • Government of Canada. 2020. Canadian climate normals 1981-2010 station data—Fort McPherson A. https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stnName&txtStationName=Fort+McPherson&searchMethod=contains&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=1648&dispBack=1. December 10.
  • Gruber, S., and S. Peckham. 2009. Chapter 7: Land-Surface Parameters and Objects in Hydrology. In Geomorphometry - Concepts, Software, Applications. Developments in Soil Science, ed. T. Hengl and T. I. Reuter. Vol. 33, 171–94. Amsterdam: Elsevier. doi: 10.1016/S0166-2481(08)00007-X.
  • Hauck, C. 2002. Frozen ground monitoring using DC resistivity tomography. Geophysical Research Letters 29 (21):2016. doi:10.1029/2002GL014995.
  • Hauck, C. 2013. New concepts in geophysical surveying and data interpretation for permafrost terrain: Geophysical surveying in permafrost terrain. Permafrost and Periglacial Processes 24 (2):131–37. doi:10.1002/ppp.1774.
  • Hayes, S., M. Lim, D. Whalen, P. J. Mann, P. Fraser, R. Penlington, and J. Martin. 2022. The role of massive ice and exposed headwall properties on retrogressive thaw slump activity. Journal of Geophysical Research: Earth Surface 127:e2022JF006602. doi:10.1029/2022JF006602.
  • Henry, K., and M. Smith. 2001. A model-based map of ground temperatures for the permafrost regions of Canada. Permafrost and Periglacial Processes 12 (4):389–98. doi:10.1002/ppp.399.
  • Hinkel, K. M., J. A. Doolittle, J. G. Bockheim, F. E. Nelson, R. Paetzold, J. M. Kimble, and R. Travis. 2001. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes 12 (2):179–90. doi:10.1002/ppp.369.
  • Intergovernmental Panel on Climate Change. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Kneisel, C., C. Hauck, R. Fortier, and B. Moorman. 2008. Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes 19 (2):157–78. doi:10.1002/ppp.616.
  • Kneisel, C., C. Hauck. 2008. Electrical methods. In ed. C. Hauck and C. Kneisel, Applied geophysics in periglacial environments, 3–27. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511535628.002.
  • Kokelj, S. A., C. R. Beel, R. F. Connon, C. E. D. Graydon, S. V. Kokelj, and C. R. Burn. 2022. Peel Plateau climate data, Northwest Territories. NWT Open Report 2022-005. doi:10.46887/2022-005
  • Kokelj, S. V., J. Kokoszka, J. van der Sluijs, A. C. A. Rudy, J. Tunnicliffe, S. Shakil, S. E. Tank, and S. Zolkos. 2021. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. The Cryosphere 15 (7):3059–81. doi:10.5194/tc-15-3059-2021.
  • Kokelj, S. V., D. Lacelle, T. C. Lantz, J. Tunnicliffe, L. Malone, I. D. Clark, and K. S. Chin. 2013. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. Journal of Geophysical Research: Earth Surface 118 (2):681–92. doi:10.1002/jgrf.20063.
  • Kokelj, S. V., J. Tunnicliffe, D. Lacelle, T. C. Lantz, K. S. Chin, and R. Fraser. 2015. Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada. Global and Planetary Change 129:56–68. doi:10.1016/j.gloplacha.2015.02.008.
  • Kunz, J., and C. Kneisel. 2021. Three‐dimensional investigation of an open‐ and a closed‐system Pingo in northwestern Canada. Permafrost and Periglacial Processes 32 (4):541–57. doi:10.1002/ppp.2115.
  • Lacelle, D., A. Brooker, R. H. Fraser, and S. V. Kokelj. 2015. Distribution and growth of thaw slumps in the Richardson Mountains–Peel Plateau region, northwestern Canada. Geomorphology 235:40–51. doi:10.1016/j.geomorph.2015.01.024.
  • Lacelle, D., B. Lauriol, G. Zazula, B. Ghaleb, N. Utting, and I. D. Clark. 2013. Timing of advance and basal condition of the Laurentide Ice Sheet during the Last Glacial Maximum in the Richardson Mountains, NWT. Quaternary Research 80 (2):274–83. doi:10.1016/j.yqres.2013.06.001.
  • Lantuit, H., and W. H. Pollard. 2008. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 95 (1–2):84–102. doi:10.1016/j.geomorph.2006.07.040.
  • Lewkowicz, A. G. 1987. Headwall retreat of ground-ice slumps, Banks Island, Northwest Territories. Canadian Journal of Earth Sciences 24 (6):1077–85. doi:10.1139/e87-105.
  • Lewkowicz, A. G., B. Etzelmüller, and S. L. Smith. 2011. Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada. Permafrost and Periglacial Processes 22 (4):320–42. doi:10.1002/ppp.703.
  • Lewkowicz, A. G., and R. G. Way. 2019. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature Communications 10 (1):1329. doi:10.1038/s41467-019-09314-7.
  • Littlefair, C. A., S. E. Tank, and S. V. Kokelj. 2017. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada. Biogeosciences 14 (23):5487–505. doi:10.5194/bg-14-5487-2017.
  • Loke, M. H. 2019. Rapid 3-D Resistivity & IP inversion using the least-squares method (For 3-D surveys using the pole-pole, pole-dipole, dipole-dipole, rectangular, Wenner, Wenner-Schlumberger, vector and non-conventional arrays) on land, aquatic, cross-borehole and time-lapse surveys.
  • Mackay, J. R. 1967. Permafrost depths, Lower Mackenzie Valley, Northwest Territories. Arctic, 21–26.
  • Moorman, B. J., S. D. Robinson, and M. M. Burgess. 2003. Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes 14 (4):319–29. doi:10.1002/ppp.463.
  • Munroe, J. S., J. A. Doolittle, M. Z. Kanevskiy, K. M. Hinkel, F. E. Nelson, B. M. Jones, Y. Shur, and J. M. Kimble. 2007. Application of ground-penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska. Permafrost and Periglacial Processes 18 (4):309–21. doi:10.1002/ppp.594.
  • Nill, L., I. Grünberg, T. Ullmann, M. Gessner, J. Boike, and P. Hostert. 2022. Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. Remote Sensing of Environment 281:113228. doi:10.1016/j.rse.2022.113228.
  • Nill, L., T. Ullmann, C. Kneisel, J. Sobiech-Wolf, and R. Baumhauer. 2019. Assessing Spatiotemporal Variations of Landsat land surface temperature and multispectral indices in the Arctic Mackenzie Delta Region between 1985 and 2018. Remote Sensing 11 (19):2329. doi:10.3390/rs11192329.
  • Nitze, I., K. Heidler, S. Barth, and G. Grosse. 2021. Developing and testing a deep learning approach for mapping retrogressive thaw slumps. Remote Sensing 13 (21):4294. doi:10.3390/rs13214294.
  • Oldenborger, G. A., and A.-M. LeBlanc. 2018. Monitoring changes in unfrozen water content with electrical resistivity surveys in cold continuous permafrost. Geophysical Journal International 215 (2):965–77. doi:10.1093/gji/ggy321.
  • O’Neill, H. B., C. R. Burn, S. V. Kokelj, and T. C. Lantz. 2015. ‘Warm’ tundra: Atmospheric and near-surface ground temperature inversions across an alpine treeline in continuous permafrost, Western Arctic, Canada: Near-surface ground temperatures across an alpine treeline. Permafrost and Periglacial Processes 26 (2):103–18. doi:10.1002/ppp.1838.
  • O’Neill, H. B., S. A. Wolfe, and C. Duchesne. 2022. Ground ice map of Canada (No. 8713; version 1.1, p. 8713). San Francisco, CA: Planet Labs PBC. doi:10.4095/330294.
  • Planet Labs PBC. San Francisco, CA. https://www.planet.com
  • Ramage, J. L., A. M. Irrgang, U. Herzschuh, A. Morgenstern, N. Couture, and H. Lantuit. 2017. Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada: Coastal RTSs along the Yukon Coast. Journal of Geophysical Research: Earth Surface 122 (9):1619–34. doi:10.1002/2017JF004231.
  • Reynolds, J. M. 2011. An introduction to applied and environmental geophysics. 2nd ed. Chichester: Wiley-Blackwell.
  • Rödder, T., and C. Kneisel. 2012. Permafrost mapping using quasi-3D resistivity imaging, Murtèl, Swiss Alps. Near Surface Geophysics 10 (2):117–27. doi:10.3997/1873-0604.2011029.
  • Segal, R. A., T. C. Lantz, and S. V. Kokelj. 2016. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environmental Research Letters 11 (3):034025. doi:10.1088/1748-9326/11/3/034025.
  • Shakil, S., S. E. Tank, S. V. Kokelj, J. E. Vonk, and S. Zolkos. 2020. Particulate dominance of organic carbon mobilization from thaw slumps on the Peel Plateau, NT: Quantification and implications for stream systems and permafrost carbon release. Environmental Research Letters 15 (11):114019. doi:10.1088/1748-9326/abac36.
  • Śledź, S., M. W. Ewertowski, and J. Piekarczyk. 2021. Applications of unmanned aerial vehicle (UAV) surveys and structure from motion photogrammetry in glacial and periglacial geomorphology. Geomorphology 378:107620. doi:10.1016/j.geomorph.2021.107620.
  • Smith, C. A. S., J. C. Meikle, and C. F. Roots (eds.). 2004. Ecoregions of the Yukon Territory: Biophysical properties of Yukon landscapes. Agriculture and Agri-Food Canada. PARC Technical Bulletin No. 04-01, Summerland, British Columbia, 313.
  • Swanson, D., and M. Nolan. 2018. Growth of retrogressive thaw slumps in the Noatak Valley, Alaska, 2010–2016, measured by airborne photogrammetry. Remote Sensing 10 (7):983. doi:10.3390/rs10070983.
  • Turner, K. W., M. D. Pearce, and D. D. Hughes. 2021. Detailed characterization and monitoring of a retrogressive thaw slump from remotely piloted aircraft systems and identifying associated influence on carbon and nitrogen export. Remote Sensing 13 (2):171. doi:10.3390/rs13020171.
  • van der Sluijs, J., S. Kokelj, R. Fraser, J. Tunnicliffe, and D. Lacelle. 2018. Permafrost terrain dynamics and infrastructure impacts revealed by UAV photogrammetry and thermal imaging. Remote Sensing 10 (11):1734. doi:10.3390/rs10111734.
  • van der Sluijs, J., S. V. Kokelj, and J. F. Tunnicliffe. 2022. Allometric scaling of retrogressive thaw slumps [Preprint]. The Cryosphere Discussions. doi:10.5194/tc-2022-149.
  • Wang, L., and H. Liu. 2006. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science 20 (2):193–213. doi:10.1080/13658810500433453.
  • Wang, B., B. Paudel, and H. Li. 2016. Behaviour of retrogressive thaw slumps in northern Canada—Three-year monitoring results from 18 sites. Landslides 13 (1):1–8. doi:10.1007/s10346-014-0549-y.
  • Ward Jones, M. K., W. H. Pollard, and B. M. Jones. 2019. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters 14 (5):055006. doi:10.1088/1748-9326/ab12fd.
  • Wheaton, J. M. 2008. Uncertainity in morphological sediment budgeting of rivers. Southampton: University of Southampton.
  • Wheaton, J. M., J. Brasington, S. E. Darby, J. Merz, G. B. Pasternack, D. Sear, and D. Vericat. 2010. Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Research and Applications 26 (4):469–86. doi:10.1002/rra.1305.
  • Wheaton, J. M., J. Brasington, S. E. Darby, and D. A. Sear. 2010. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes and Landforms 35 (2):136–56. doi:10.1002/esp.1886.
  • Wheeler, J. O., P. F. Hoffman, K. D. Card, A. Davidson, B. V. Sanford, A. V. Okulitch, and W. R. Roest. 1996. Geological map of Canada [Map]. doi:10.4095/208175
  • Yukon Geological Survey. 2020. Yukon digital bedrock geology [Map]. https://data.geology.gov.yk.ca/Compilation/3
  • Zolkos, S., S. E. Tank, R. G. Striegl, S. V. Kokelj, J. Kokoszka, C. Estop-Aragonés, and D. Olefeldt. 2020. Thermokarst amplifies fluvial inorganic carbon cycling and export across watershed scales on the Peel Plateau, Canada. Biogeosciences 17 (20):5163–82. doi:10.5194/bg-17-5163-2020.