1,880
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Drought erodes mountain plant community resistance to novel species under a warming climate

ORCID Icon, , , , , & show all
Article: 2174282 | Received 28 Feb 2022, Accepted 24 Jan 2023, Published online: 07 Mar 2023

References

  • Alexander, J. M., L. Chalmandrier, J. Lenoir, T. I. Burgess, F. Essl, S. Haider, C. Kueffer, K. McDougall, A. Milbau, M. A. Nuñez, et al. 2018. Lags in the response of mountain plant communities to climate change. Global Change Biology 24 (2):563–15. doi:10.1111/gcb.13976.
  • Alexander, J. M., J. M. Diez, and J. M. Levine. 2015. Novel competitors shape species’ responses to climate change. Nature 525 (7570):515–18. doi:10.1038/nature14952.
  • Alexander, J. M., and J. M. Levine. 2019. Earlier phenology of a nonnative plant increases impacts on native competitors. Proceedings of the National Academy of Sciences 116 (13):6199–204. doi:10.1073/pnas.1820569116.
  • Allan, E., W. Weisser, A. Weigelt, C. Roscher, M. Fischer, and H. Hillebrand. 2011. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proceedings of the National Academy of Sciences 108 (41):17034–39. doi:10.1073/pnas.1104015108.
  • Bahn, M., M. Schmitt, R. Siegwolf, A. Richter, and N. Brüggemann. 2009. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist 182 (2):451–60. doi:10.1111/j.1469-8137.2008.02755.x.
  • Bardgett, R. D., L. Mommer, and F. T. De Vries. 2014. Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29 (12):692–99. doi:10.1016/j.tree.2014.10.006.
  • Bastos, A., P. Ciais, P. Friedlingstein, S. Sitch, J. Pongratz, L. Fan, J. P. Wigneron, U. Weber, M. Reichstein, Z. Fu, et al. 2020. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances 6 (24):eaba2724. doi:10.1126/sciadv.aba2724.
  • Basto, S., K. Thompson, J. P. Grime, J. D. Fridley, S. Calhim, A. P. Askew, and M. Rees. 2018. Severe effects of long-term drought on calcareous grassland seed banks. Npj Climate and Atmospheric Science 1 (1):1–7. doi:10.1038/s41612-017-0007-3.
  • Bektaş, B., W. Thuiller, A. Saillard, P. Choler, J. Renaud, M.-P. Colace, R. Della Vedova, and T. Münkemüller. 2021. Lags in phenological acclimation of mountain grasslands after recent warming. Journal of Ecology 109 (9):3396–410. doi:10.1111/1365-2745.13727.
  • Berauer, B. J., P. A. Wilfahrt, M. A. S. Arfin-Khan, P. Eibes, A. Von Heßberg, J. Ingrisch, M. Schloter, M. A. Schuchardt, and A. Jentsch. 2019. Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arctic, Antarctic, and Alpine Research 51 (1):215–31. doi:10.1080/15230430.2019.1618116.
  • Box, J. E., W. T. Colgan, T. R. Christensen, N. M. Schmidt, M. Lund, F.-J. W. Parmentier, R. Brown, U. S. Bhatt, E. S. Euskirchen, V. E. Romanovsky, et al. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14 (4):045010. doi:10.1088/1748-9326/aafc1b.
  • Buma, B. 2015. Disturbance interactions: Characterization, prediction, and the potential for cascading effects. Ecosphere 6 (4):1–15. doi:10.1890/ES15-00058.1.
  • Catford, J. A., R. Jansson, and C. Nilsson. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15 (1):22–40. doi:10.1111/j.1472-4642.2008.00521.x.
  • Collins, C. G., S. C. Elmendorf, J. G. Smith, L. Shoemaker, M. Szojka, M. Swift, and K. N. Suding. 2022. Global change re-structures alpine plant communities through interacting abiotic and biotic effects. Ecology Letters 25:1813–26. doi:10.1111/ele.14060.
  • Cotto, O., J. Wessely, D. Georges, G. Klonner, M. Schmid, S. Dullinger, W. Thuiller, and F. Guillaume. 2017. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications 8 (1):15399. doi:10.1038/ncomms15399.
  • Crepaz, H., G. Niedrist, J. Wessely, M. Rossi, and S. Dullinger. 2021. Resident vegetation modifies climate-driven elevational shift of a mountain sedge. Alpine Botany 131 (1):13–25. doi:10.1007/s00035-020-00243-6.
  • De Boeck, H. J., S. Bassin, M. Verlinden, M. Zeiter, and E. Hiltbrunner. 2016. Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist 209 (2):531–41. doi:10.1111/nph.13601.
  • De Boeck, H. J., E. Hiltbrunner, M. Verlinden, S. Bassin, and M. Zeiter. 2018. Legacy effects of climate extremes in Alpine grassland. Frontiers in Plant Science 9. doi:10.3389/fpls.2018.01586.
  • Diez, J. M., C. M. D’Antonio, J. S. Dukes, E. D. Grosholz, J. D. Olden, C. J. Sorte, D. M. Blumenthal, B. A. Bradley, R. Early, I. Ibáñez, et al. 2012. Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment 10 (5):249–57. doi:10.1890/110137.
  • Dullinger, S., A. Gattringer, W. Thuiller, D. Moser, N. E. Zimmermann, A. Guisan, W. Willner, C. Plutzar, M. Leitner, T. Mang, et al. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2 (8):619–22. doi:10.1038/nclimate1514.
  • Figueiredo, L., J. Krauss, I. Steffan-Dewenter, and J. Sarmento Cabral. 2019. Understanding extinction debts: Spatio–temporal scales, mechanisms and a roadmap for future research. Ecography 42 (12):1973–90. doi:10.1111/ecog.04740.
  • Gibson‐Reinemer, D. K., K. S. Sheldon, and F. J. Rahel. 2015. Climate change creates rapid species turnover in montane communities. Ecology and Evolution 5 (12):2340–47. doi:10.1002/ece3.1518.
  • Global Biodiversity Information Facility. 2021. https://www.gbif.org/
  • Grant, K., J. Kreyling, H. Heilmeier, C. Beierkuhnlein, and A. Jentsch. 2014. Extreme weather events and plant–plant interactions: Shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecological Research 29 (5):991–1001. doi:10.1007/s11284-014-1187-5.
  • Guo, L., J. Chen, E. Luedeling, J. -S. He, J. Cheng, Z. Wen, and C. Peng. 2018. Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau. Plant and Soil 425:177–88. doi:10.1007/s11104-018-3582-0.
  • Hallett, L., M. Avolio, S. Jones, A. MacDonald, D. Flynn, P. Slaughter, J. Ripplinger, S. Collins, C. Gries, and M. Jones. 2018. codyn: Community dynamics metrics R package (version 2). KNB data repository. doi:10.5063/F1N877Z6.
  • Hallett, J. S. Hsu, E. E. Cleland, S. L. Collins, T. L. Dickson, E. C. Farrer, L. A. Gherardi, K. L. Gross, R. J. Hobbs, L. Turnbull, et al. 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95 (6):1693–700. doi:10.1890/13-0895.1.
  • Haynes, K. R., J. Friedman, J. C. Stella, and D. J. Leopold. 2021. Assessing climate change tolerance and the niche breadth-range size hypothesis in rare and widespread alpine plants. Oecologia 196 (4):1233–45. doi:10.1007/s00442-021-05003-9.
  • Hector, A., and R. Bagchi. 2007. Biodiversity and ecosystem multifunctionality. Nature 448 (7150):188–90. doi:10.1038/nature05947.
  • Hefel, C., and J. Stöcklin. 2010. Flora der Furka. Bauhinia 22:33–59.
  • Hoover, D. L., A. K. Knapp, and M. D. Smith. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95 (9):2646–56. doi:10.1890/13-2186.1.
  • Ingrisch, J., S. Karlowsky, A. Anadon-Rosell, R. Hasibeder, A. König, A. Augusti, G. Gleixner, and M. Bahn. 2018. Land use alters the drought responses of productivity and CO2 fluxes in mountain grassland. Ecosystems 21 (4):689–703. doi:10.1007/s10021-017-0178-0.
  • Intergovernmental Panel on Climate Change. 2021. Climate change 2021: The physical science basis. (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, & M. I. Gomis, Eds.). Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
  • Isbell, F., D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein, T. M. Bezemer, C. Bonin, H. Bruelheide, E. de Luca, et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526 (7574):574–77. doi:10.1038/nature15374.
  • Jäger, E. J., and W. Rothmaler, Eds. 2017. Rothmaler - Exkursionsflora von Deutschland. 2: Gefäßpflanzen: Grundband (21., durchgesehene Auflage). Berlin Heidelberg: Springer Verlag.
  • Jentsch, A., and P. White. 2019. A theory of pulse dynamics and disturbance in ecology. Ecology 100 (7):e02734. doi:10.1002/ecy.2734.
  • Klanderud, K., V. Vandvik, and D. Goldberg. 2015. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLOS ONE 10 (6):e0130205. doi:10.1371/journal.pone.0130205.
  • Körner, C. 2021. Alpine plant life: Functional plant ecology of high mountain ecosystems. 3rd ed. Berlin Heidelberg: Springer Verlag.
  • Körner, C., and E. Hiltbrunner. 2018. The 90 ways to describe plant temperature. Special Issue on Alpine and Arctic Plant Communities: A Worldwide Perspective 30:16–21. doi:10.1016/j.ppees.2017.04.004.
  • Körner, C., and E. Hiltbrunner. 2021. Why is the alpine flora comparatively robust against climatic warming? Diversity 13 (8):383. doi:10.3390/d13080383.
  • Körner, C., H. Hoflacher, and G. Wieser 1978. Untersuchungen zum Wasserhaushalt von Almflächen in Gasteiner-Tal. In Ökologische Analysen von Almflächen im Gasteiner Tal. Universitätsverlag, 2, ed. A. Cernusca, 67–79. WagnerWagner: Innsbruck. Veröffentlichungen des Österreichischen MaB-Hochgebirgsprogramms Hohe Tauern.
  • Körner, C., G. Wieser, and H. Hoflacher. 1978. In Untersuchungen zum Wasserhaushalt von Almflächen in Gasteiner-Tal, ed. A. Cernusca, Vol. 2, 67–76. Universitätsverlag Wagner Innsbruck.
  • Kreyling, J., A. Jentsch, and C. Beierkuhnlein. 2011. Stochastic trajectories of succession initiated by extreme climatic events. Ecology Letters 14 (8):758–64. doi:10.1111/j.1461-0248.2011.01637.x.
  • Kudo, G., Y. Amagai, B. Hoshino, and M. Kaneko. 2011. Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: Pattern of expansion and impact on species diversity. Ecology and Evolution 1 (1):85–96. doi:10.1002/ece3.9.
  • Lamprecht, A., P. R. Semenchuk, K. Steinbauer, M. Winkler, and H. Pauli. 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytologist 220 (2):447–59. doi:10.1111/nph.15290.
  • Landesamt für Umwelt. 2020. Niedrigwasser 2018 und 2019 – Analysen und Auswirkungen für Bayern. https://www.bestellen.bayern.de/application/eshop_app000007?SID=389222430&ACTIONxSESSxSHOWPIC(BILDxKEY:%27lfu_was_00198%27,BILDxCLASS:%27Artikel%27,BILDxTYPE:%27PDF%27)
  • Lembrechts, J. J., J. Lenoir, M. A. Nuñez, A. Pauchard, C. Geron, G. Bussé, A. Milbau, and I. Nijs. 2018. Microclimate variability in alpine ecosystems as stepping stones for non-native plant establishment above their current elevational limit. Ecography 41 (6):900–09. doi:10.1111/ecog.03263.
  • Lembrechts, J. J., A. Pauchard, J. Lenoir, M. A. Nuñez, C. Geron, A. Ven, P. Bravo-Monasterio, E. Teneb, I. Nijs, and A. Milbau. 2016. Disturbance is the key to plant invasions in cold environments. Proceedings of the National Academy of Sciences 113 (49):14061–66. doi:10.1073/pnas.1608980113.
  • Ma, Z., H. Liu, Z. Mi, Z. Zhang, Y. Wang, W. Xu, L. Jiang, and J.-S. He. 2017. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications 8 (1):15378. doi:10.1038/ncomms15378.
  • Mamantov, M. A., D. K. Gibson‐Reinemer, E. B. Linck, and K. S. Sheldon. 2021. Climate‐driven range shifts of montane species vary with elevation. Global Ecology and Biogeography 30 (4):784–94. doi:10.1111/geb.13246.
  • Margreiter, V., J. Walde, and B. Erschbamer. 2021. Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps. Alpine Botany 131:135–50. doi:10.1007/s00035-021-00264-9.
  • McLaren, J. R., and R. Turkington. 2010. Ecosystem properties determined by plant functional group identity. Journal of Ecology 98 (2):459–69. doi:10.1111/j.1365-2745.2009.01630.x.
  • Meineri, E., K. Klanderud, J. Guittar, D. E. Goldberg, and V. Vandvik. 2020. Functional traits, not productivity, predict alpine plant community openness to seedling recruitment under climatic warming. Oikos 129 (1):13–23. doi:10.1111/oik.06243.
  • Meineri, E., J. Spindelböck, and V. Vandvik. 2013. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecology 214 (4):607–19. doi:10.1007/s11258-013-0193-y.
  • Milbau, A., D. Reheul, B. De Cauwer, and I. Nijs. 2007. Factors determining plant–neighbour interactions on different spatial scales in young species-rich grassland communities. Ecological Research 22:242–47. doi:10.1007/s11284-006-0018-8.
  • Müller, L. M., and M. Bahn. 2022. Drought legacies and ecosystem responses to subsequent drought. Global Change Biology 28:5086–103. doi:10.1111/gcb.16270.
  • Nomoto, H. A., and J. M. Alexander. 2021. Drivers of local extinction risk in alpine plants under warming climate. Ecology Letters 24 (6):1157–66. doi:10.1111/ele.13727.
  • Oldfather, M. F., and D. D. Ackerly. 2019. Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arctic, Antarctic, and Alpine Research 51 (1):201–14. doi:10.1080/15230430.2019.1618148.
  • Olsen, S. L., J. P. Töpper, O. Skarpaas, V. Vandvik, and K. Klanderud. 2016. From facilitation to competition: Temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology 22 (5):1915–26. doi:10.1111/gcb.13241.
  • Pauchard, A., A. Milbau, A. Albihn, J. Alexander, T. Burgess, C. Daehler, G. Englund, F. Essl, B. Evengård, G. B. Greenwood, et al. 2016. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: New challenges for ecology and conservation. Biological Invasions 18 (2):345–53. doi:10.1007/s10530-015-1025-x.
  • Pepin, N., H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, H. Fowler, G. Greenwood, M. Z. Hashmi, X. D. Liu, J. R. Miller, et al. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5:424.
  • Pinto, S. M., and Y. K. Ortega. 2016. Native species richness buffers invader impact in undisturbed but not disturbed grassland assemblages. Biological Invasions 18 (11):3193–204. doi:10.1007/s10530-016-1208-0.
  • Ploughe, L. W., E. M. Jacobs, G. S. Frank, S. M. Greenler, M. D. Smith, and J. S. Dukes. 2019. Community Response to Extreme Drought (CRED): A framework for drought-induced shifts in plant–plant interactions. New Phytologist 222 (1):52–69. doi:10.1111/nph.15595.
  • Prudent, M., S. Dequiedt, C. Sorin, S. Girodet, V. Nowak, G. Duc, C. Salon, and P.-A. Maron. 2020. The diversity of soil microbial communities matters when legumes face drought. Plant, Cell & Environment 43 (4):1023–35. doi:10.1111/pce.13712.
  • R Core Team. 2021. R: A language and environment for statistical computing. https://www.R-project.org/
  • Rixen, C., and S. Wipf. 2017. Non-equilibrium in alpine plant assemblages: Shifts in Europe’s summit floras. In High mountain conservation in a changing world, ed. J. Catalan, J. M. Ninot, and M. M. Aniz, 285–303. Springer International Publishing. doi:10.1007/978-3-319-55982-7_12.
  • Rixen, C., S. Wipf, S. B. Rumpf, J. Giejsztowt, J. Millen, J. W. Morgan, A. B. Nicotra, S. Venn, S. Zong, K. J. M. Dickinson, et al. 2022. Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology 110:860–75. doi:10.1111/1365-2745.13848.
  • Rosbakh, S., A. Leingärtner, B. Hoiss, J. Krauss, I. Steffan-Dewenter, and P. Poschlod. 2017. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Frontiers in Plant Science 8:1478. doi:10.3389/fpls.2017.01478.
  • Rumpf, S. B., K. Hülber, G. Klonner, D. Moser, M. Schütz, J. Wessely, W. Willner, N. E. Zimmermann, and S. Dullinger. 2018. Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences 115 (8):1848–53. doi:10.1073/pnas.1713936115.
  • Scheffer, M., and S. R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends in Ecology & Evolution 18 (12):648–56. doi:10.1016/j.tree.2003.09.002.
  • Scherrer, D., and C. Körner. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602–13. doi:10.1111/j.1365-2486.2009.02122.x.
  • Scherrer, D., and C. Körner. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming: Topographical control of thermal-habitat differentiation buffers alpine plant diversity. Journal of Biogeography 38 (2):406–16. doi:10.1111/j.1365-2699.2010.02407.x.
  • Schmidt, N. M., J. B. Mosbacher, P. S. Nielsen, C. Rasmussen, T. T. Høye, and T. Roslin. 2016. An ecological function in crisis? The temporal overlap between plant flowering and pollinator function shrinks as the Arctic warms. Ecography 39 (12):1250–52. doi:10.1111/ecog.02261.
  • Schuchardt, M. A., B. J. Berauer, A. Heßberg, P. Wilfahrt, and A. Jentsch. 2021. Drought effects on montane grasslands nullify benefits of advanced flowering phenology due to warming. Ecosphere 12:7. doi:10.1002/ecs2.3661.
  • Spinoni, J., J. V. Vogt, G. Naumann, P. Barbosa, and A. Dosio. 2018. Will drought events become more frequent and severe in Europe? International Journal of Climatology 38 (4):1718–36. doi:10.1002/joc.5291.
  • Stampfli, A., J. M. G. Bloor, M. Fischer, and M. Zeiter. 2018. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biology 24 (5):2021–34. doi:10.1111/gcb.14046.
  • Stampfli, A., and M. Zeiter. 2020. The impact of seed deficiency on productivity and on negative drought effect in semi-natural grassland. Journal of Vegetation Science 31 (6):1066–78. doi:10.1111/jvs.12889.
  • Steinbauer, M. J., R. Field, J.-A. Grytnes, P. Trigas, C. Ah-Peng, F. Attorre, H. J. B. Birks, P. A. V. Borges, P. Cardoso, C.-H. Chou, et al. 2016. Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography 25 (9):1097–107. doi:10.1111/geb.12469.
  • Steinbauer, M. J., J.-A. Grytnes, G. Jurasinski, A. Kulonen, J. Lenoir, H. Pauli, C. Rixen, M. Winkler, M. Bardy-Durchhalter, E. Barni, et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556 (7700):231–34. doi:10.1038/s41586-018-0005-6.
  • Steinbauer, K., A. Lamprecht, P. Semenchuk, M. Winkler, and H. Pauli. 2020. Dieback and expansions: Species-specific responses during 20 years of amplified warming in the high Alps. Alpine Botany 130 (1):1–11. doi:10.1007/s00035-019-00230-6.
  • Stephan, R., M. Erfurt, S. Terzi, M. Žun, B. Kristan, K. Haslinger, and K. Stahl. 2021. An inventory of Alpine drought impact reports to explore past droughts in a mountain region. Natural Hazards and Earth System Sciences 21 (8):2485–501. doi:10.5194/nhess-21-2485-2021.
  • Thompson, P. L., and A. Gonzalez. 2017. Dispersal governs the reorganization of ecological networks under environmental change. Nature Ecology & Evolution 1 (6):0162. doi:10.1038/s41559-017-0162.
  • Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak. 1994. Habitat destruction and the extinction debt. Nature 371 (6492):65–66. doi:10.1038/371065a0.
  • Tomiolo, S., M. C. Bilton, and K. Tielbörger. 2020. Plant community stability results from shifts in species assemblages following whole community transplants across climates. Oikos 129 (1):70–80. doi:10.1111/oik.06536.
  • Turner, M. G., W. J. Calder, G. S. Cumming, T. P. Hughes, A. Jentsch, S. L. LaDeau, T. M. Lenton, B. N. Shuman, M. R. Turetsky, Z. Ratajczak, et al. 2020. Climate change, ecosystems and abrupt change: Science priorities. Philosophical Transactions of the Royal Society B: Biological Sciences 375 (1794):20190105. doi:10.1098/rstb.2019.0105.
  • Usinowicz, J., and J. M. Levine. 2021. Climate-driven range shifts reduce persistence of competitors in a perennial plant community. Global Change Biology 27 (9):1890–903. doi:10.1111/gcb.15517.
  • Valencia, E., F. de Bello, T. Galland, P. B. Adler, J. Lepš, A. E-Vojtkó, R. van Klink, C. P. Carmona, J. Danihelka, J. Dengler, et al. 2020. Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences 117 (39):24345–51. doi:10.1073/pnas.1920405117.
  • Vázquez-Ramírez, J., and S. E. Venn. 2021. Seeds and seedlings in a changing world: A systematic review and meta-analysis from high altitude and high latitude ecosystems. Plants 10 (4):768. doi:10.3390/plants10040768.
  • Vetter, V. M. S., J. Kreyling, J. Dengler, I. Apostolova, M. A. S. Arfin‐Khan, B. J. Berauer, S. Berwaers, H. J. De Boeck, I. Nijs, M. A. Schuchardt, et al. 2020. Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. Global Change Biology 26 (6):3539–51. doi:10.1111/gcb.15025.
  • Vetter, V. M. S., N. B. Tjaden, A. Jaeschke, C. Buhk, V. Wahl, P. Wasowicz, and A. Jentsch. 2018. Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Frontiers in Plant Science 9. doi:10.3389/fpls.2018.00715.
  • Vetter, V. M. S., J. Walter, P. A. Wilfahrt, C. Buhk, M. Braun, S. Clemens, E. Dinkel, M. Dubbert, A. Schramm, F. Wegener, et al. 2019. Invasion windows for a global legume invader are revealed after joint examination of abiotic and biotic filters. Plant Biology 21 (5):832–43. doi:10.1111/plb.12987.
  • Wilfahrt, P. A., A. H. Schweiger, N. Abrantes, M. A. S. Arfin-Khan, M. Bahn, B. J. Berauer, M. Bierbaumer, I. Djukic, M. van Dusseldorp, P. Eibes, et al. 2021. Disentangling climate from soil nutrient effects on plant biomass production using a multispecies phytometer. Ecosphere 12 (8):e03719. doi:10.1002/ecs2.3719.
  • Yang, G., J. Roy, S. D. Veresoglou, and M. C. Rillig. 2021. Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist 229 (5):2945–56. doi:10.1111/nph.17065.