1,586
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Arthropod communities along an elevation gradient in Denali National Park and Preserve, Alaska: Rapidly shrinking tundra hosts a unique assemblage of specialists

ORCID Icon, &
Article: 2178149 | Received 11 Mar 2022, Accepted 03 Feb 2023, Published online: 15 Mar 2023

References

  • Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B: Biological Sciences 267:739–25. doi:10.1098/rspb.2000.1065.
  • Ameline, C., T. T. Høye, J. J. Bowden, R. R. Hansen, O. L. P. Hansen, C. Puzin, P. Vernon, and J. Pétillon. 2018. Elevational variation of body size and reproductive traits in high-latitude wolf spiders (Araneae: Lycosidae). Polar Biology 41 (12):2561–74. doi:10.1007/s00300-018-2391-5.
  • Anderson, R. A., and S. B. Peck. 1985. The insects and arachnids of Canada, Part 13. The carrion beetles of Canada and Alaska (Coleoptera: Silphidae and Agyrtidae). Ottawa: Canada Department of Agriculture, Research Branch, Biosystematic Research Institute.
  • Armbruster, W. S., and D. A. Guinn. 1989. The solitary bee fauna (Hymenoptera: Apoidea) of interior and Arctic Alaska: Flower associations, habitat use, and phenology. Journal of the Kansas Entomological Society 62 (4):468–83.
  • Arnett, R. H., M. C. Thomas, P. E. Skelley, and J. H. Frank. 2002. American Beetles: Polyphaga: Scarabaeoidea through Curculionoidea, Vol. 2. Boca Raton, FL: CRC Press.
  • Ascher, J. S., and J. Pickering. 2019. Discover Life bee species guide and world checklist (Hymenoptera: Apoidea).
  • Asmus, A. L., H. E. Chmura, T. T. Høye, J. S. Krause, S. K. Sweet, J. H. Perez, N. T. Boelman, J. C. Wingfield, and L. Gough. 2018. Shrub shading moderates the effects of weather on arthropod activity in Arctic tundra. Ecological Entomology 43 (5):647–55. doi:10.1111/een.12644.
  • Ballinger, T. J., J. E. Overland, M. Wang, U. S. Bhatt, E. Hanna, I. Hanssen-Bauer, S. -J. Kim, R. L. Thoman, and J. E. Walsh. 2020. Surface Air Temperature. Arctic Report Card 2020, R.L. Thoman, J. Richter-Menge, and M.L. Druckenmiller, Eds.
  • Barredo, J. I., A. Mauri, and G. Caudullo. 2020. Alpine tundra contraction under future warming scenarios in Europe. Atmosphere 11 (7):698. doi:10.3390/atmos11070698.
  • Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using Lme4. Journal of Statistical Software 67 (1):1–48. doi:10.18637/jss.v067.i01.
  • Becker, N., H. Hein, A. Anneser, K. A. Vanselow, and J. Löffler. 2020. Differences in mobility and dispersal capacity determine body size clines in two common alpine-tundra arthropods. Insects 11:74. doi:10.3390/insects11020074.
  • Bergeron, J. A. C., J. R. Spence, W. J. A. Volney, J. Pinzon, and D. J. Hartley. 2013. Effect of habitat type and pitfall trap installation on captures of epigaeic arthropod assemblages in the boreal forest. The Canadian Entomologist 145:547–65. doi:10.4039/tce.2013.38.
  • Biondini, M. E., J. P. W. Mielke, and K. J. Berry. 1988. Data-dependent permutation techniques for the analysis of ecological data. Vegetatio 75:161–68. doi:10.1007/BF00045630.
  • Bousquet, Y., S. Laplante, H. E. J. Hammond, and D. W. Langor. 2017. Cerambycidae (Coleoptera) of Canada and Alaska: Identification guide with nomenclatural, taxonomic, distributional, host-plant, and ecological data. Prague: Nakladatelství Jan Farkač.
  • Bowden, J. J., and C. M. Buddle. 2010a. Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory, Canada. Écoscience 17 (3):287–97. doi:10.2980/17-3-3308.
  • Bowden, J. J., and C. M. Buddle. 2010b. Spider assemblages across elevation and latitudinal gradients in the Yukon Territory, Canada. Arctic 63 (3):261–72. doi:10.14430/arctic1490.
  • Bowden, J. J., R. R. Hansen, K. Olsen, and T. T. Høye. 2015. Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biology 38 (4):559–68. doi:10.1007/s00300-014-1622-7.
  • Bright, D. E. 1976. The insects and arachnids of Canada, Part 2: The bark beetles of Canada and Alaska, Coleoptera: Scolytidae. Ottawa: Canada Department of Agriculture, Research Branch, Biosystematic Research Institute.
  • Bright, D. E., and P. Bouchard. 2008. The insects and arachnids of Canada. Part 25. The Weevils of Canada and Alaska. Volume 2. Coleoptera, Curculionidae, Entiminae. Ottawa: Canada Department of Agriculture, Research Branch, Biosystematic Research Institute.
  • Campbell, J. M. 1968. A revision of the New World Micropeplidae (Coleoptera: Staphylinidae) with a rearrangement of the world species. The Canadian Entomologist 100:225–67. doi:10.4039/Ent100225-3.
  • Campbell, J. M. 1973. A revision of the genus Tachinus (Coleoptera: Staphylinidae) of North and Central America. The Memoirs of the Entomological Society of Canada 105:7–137. doi:10.4039/entm10590fv.
  • Campbell, J. M. 1979. A revision of the genus Tachyporus Gravenhorst (Coleoptera: Staphylinidae) of North and Central America. The Memoirs of the Entomological Society of Canada 111 (S109):1–95. doi:10.4039/entm111109fv.
  • Campbell, J. M. 1982a. A revision of the genus Lordithon Thomson of North and Central America (Coleoptera: Staphylinidae). Memoirs of the Entomological Society of Canada 114:5–116. doi:10.4039/entm114119fv.
  • Campbell, J. M. 1982b. A revision of the North American Omaliinae (Coleoptera: Staphylinidae). 3. The genus Acidota Stephens. The Canadian Entomologist 114:1003–29. doi:10.4039/Ent1141003-11.
  • Campbell, J. M. 1983. A revision of the North American Omaliinae (Coleoptera: Staphylinidae). 4. The genus Olophrum Erichson. The Canadian Entomologist 115:577–622. doi:10.4039/Ent115577-6.
  • Campbell, J. M. 1984. A revision of the North American Omaliinae (Coleoptera: Staphylinidae). 5. The genera Arpedium Erichson and Eucnecosum Reitter. The Canadian Entomologist 116:487–527. doi:10.4039/Ent116487-4.
  • Campbell, J. M. 1991. A revision of the genera Mycetoporus Mannerheim and Ischnosoma Stephens (Coleoptera: Staphylinidae: Tachyporinae) of North and Central America. The Memoirs of the Entomological Society of Canada 123 (S156):3–169. doi:10.4039/entm123156fv.
  • Catling, P. M. 2008. Grasshoppers and related insects of Northwest Territories and adjacent regions. Yellowknife: Environment and Natural Resources, GNWT.
  • Cerrato, C., E. Rocchia, M. Brunetti, R. Bionda, B. Bassano, A. Provenzale, S. Bonelli, and R. Viterbi. 2019. Butterfly distribution along altitudinal gradients: Temporal changes over a short time period. Nature Conservation 34:91–118. doi:10.3897/natureconservation.34.30728.
  • Chamberlin, R. V. 1948. The genera of North American Dictynidae. Bulletin of the University of Utah 38 (15):1–31.
  • Chamberlin, R. V., and W. J. Gertsch. 1958. The spider family Dictynidae in America north of Mexico. Bulletin of the American Museum of Natural History 116:1–152.
  • Chao, A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11:265–70.
  • Chao, A., K. H. Ma, T. C. Hsieh, and C. Chiu. 2015. Online program SpadeR (species-richness prediction and diversity estimation in R). Program and User’s Guide. http://chao.stat.nthu.edu.tw/wordpress/software_download/.
  • Chen, I. C., H. J. Shiu, S. Benedick, J. D. Holloway, V. K. Chey, H. S. Barlow, J. K. Hill, and C. D. Thomas. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences 106 (5):1479–83. doi:10.1073/pnas.0809320106.
  • Clark, M. H., and M. S. Duffy. 2006. Soil survey of Denali National Park Area, Alaska. Palmer, Alaska: National Cooperative Soil Survey, NRCS and USDA.
  • Corbet, S. A., M. Fussell, R. Ake, A. Fraser, C. Gunson, A. Savage, and K. Smith. 1993. Temperature and the pollinating activity of social bees. Ecological Entomology 18:17–30. doi:10.1111/j.1365-2311.1993.tb01075.x.
  • Danks, H. V. 1993. Patterns of diversity in the Canadian insect fauna. Memoirs of the Entomological Society of Canada 165:51–74. doi:10.4039/entm125165051-1.
  • Danks, H. V. 2004. Seasonal adaptations in Arctic insects. Integrative and Comparative Biology 44 (2):85–94. doi:10.1093/icb/44.2.85.
  • Dial, R. J., E. E. Berg, K. Timm, A. McMahon, and J. Geck. 2007. Changes in the alpine forest-tundra ecotone commensurate with recent warming in Southcentral Alaska: Evidence from orthophotos and field plots: Tree line changes in Southcentral Alaska. Journal of Geophysical Research: Biogeosciences 112 (G4). doi: 10.1029/2007JG000453.
  • Dillon, M. E. 2006. Into thin air: Physiology and evolution of alpine insects. Integrative and Comparative Biology 46:49–61. doi:10.1093/icb/icj007.
  • Dirzo, R., H. S. Young, M. Galetti, G. Ceballos, N. J. B. Isaac, and B. Collen. 2014. Defaunation in the Anthropocene. Science 345:401–06. doi:10.1126/science.1251817.
  • Dondale, C. D., and J. H. Redner. 1978. The insects and arachnids of Canada. Part 5. The crab spiders of Canada and Alaska, Araneae: Philodromidae and Thomisidae. Research Branch Agriculture Canada Publication 1663, 1–255.
  • Dondale, C. D., and J. H. Redner. 1982. The insects and arachnids of Canada, Part 9. The sac spiders of Canada and Alaska, Araneae: Clubionidae and Anyphaenidae. Research Branch Agriculture Canada Publication 1724, 1–194.
  • Dondale, C. D., and J. H. Redner. 1990. The insects and arachnids of Canada, Part 17. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska, Araneae: Lycosidae, Pisauridae, and Oxyopidae. Research Branch Agriculture Canada Publication 1856, 1–383.
  • Dondale, C. D., J. H. Redner, P. Paquin, and H. W. Levi. 2003. The insects and arachnids of Canada. Part 23. The orb-weaving spiders of Canada and Alaska (Araneae: Uloboridae, Tetragnathidae, Araneidae, Theridiosomatidae). Ottawa, Ontario: NRC Research Press.
  • Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67:345–66. doi:10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.
  • Edwards, J. S. 1987. Arthropods of alpine aeolian ecosystems. Annual Review of Entomology 32 (1):163–79. doi:10.1146/annurev.en.32.010187.001115.
  • Edwards, M. E., A. Lloyd, and W. S. Armbruster. 2018. Assembly of Alaska-Yukon boreal steppe communities: Testing biogeographic hypotheses via modern ecological distributions: Alaska-Yukon boreal steppe assembly. Journal of Systematics and Evolution 56 (5):466–75. doi:10.1111/jse.12307.
  • Elberling, H., and J. M. Olesen. 1999. The structure of a high latitude plant-flower visitor system: The dominance of flies. Ecography 22:314–23. doi:10.1111/j.1600-0587.1999.tb00507.x.
  • El-Moursy, A. A. 1970. The taxonomy of the Nearctic species of the genus Byrrhus Linnaeus (Coleoptera: Byrrhidae). Quaestiones Entomologicae 6:327–38.
  • Ernst, C. M., and C. M. Buddle. 2015. Drivers and patterns of ground-dwelling beetle biodiversity across northern Canada. PLOS One 10 (4):e0122163. doi:10.1371/journal.pone.0122163.
  • Ernst, C. M., S. Loboda, and C. M. Buddle. 2016. Capturing northern biodiversity: Diversity of Arctic, subarctic and north boreal beetles and spiders are affected by trap type and habitat. Insect Conservation and Diversity 9:63–73. doi:10.1111/icad.12143.
  • Fox, C. W., and M. E. Czesak. 2000. Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology 45 (1):341–69. doi:10.1146/annurev.ento.45.1.341.
  • Franzén, M., and E. Öckinger. 2012. Climate-driven changes in pollinator assemblages during the last 60 years in an Arctic mountain region in northern Scandinavia. Journal of Insect Conservation 16:227–38. doi:10.1007/s10841-011-9410-y.
  • Gordon, R. D. 1985. The Coccinellidae (Coleoptera) of America North of Mexico. Journal of the New York Entomological Society 93 (1):1–912.
  • Grabherr, G., M. Gottfried, and H. Paull. 2000. GLORIA: A global observation research initiative in alpine environments. Mountain Research and Development 20:190–91. doi:10.1659/0276-4741(2000)020[0190:GAGORI]2.0.CO;2.
  • Greenleaf, S. S., N. M. Williams, R. Winfree, and C. Kremen. 2007. Bee foraging ranges and their relationship to body size. Oecologia 153:589–96. doi:10.1007/s00442-007-0752-9.
  • Guénard, B., and A. Lucky. 2011. Shuffling leaf litter samples produces more accurate and precise snapshots of terrestrial arthropod community composition. Environmental Entomology 40 (6):1523–29. doi:10.1603/EN11104.
  • Guo, F., B. Guénard, E. P. Economo, C. A. Deutsch, and T. C. Bonebrake. 2020. Activity niches outperform thermal physiological limits in predicting global ant distributions. Journal of Biogeography 47:829–42. doi:10.1111/jbi.13799.
  • Hallmann, C. A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, and W. Stenmans. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS One 12 (10):e0185809. doi:10.1371/journal.pone.0185809.
  • Hall, M. A., and E. L. Reboud. 2019. High sampling effectiveness for non-bee flower visitors using vane traps in both open and wooded habitats. Austral Entomology 58:836–47. doi:10.1111/aen.12416.
  • Halsch, C. A., A. M. Shapiro, J. A. Fordyce, C. C. Nice, J. H. Thorne, D. P. Waetjen, and M. L. Forister. 2021. Insects and recent climate change. PNAS 118:e2002543117. doi:10.1073/pnas.2002543117.
  • Hansen, R. R., O. L. P. Hansen, J. J. Bowden, U. A. Treier, S. Normand, and T. T. Høye. 2016. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. PeerJ 4 (July):e2224. doi:10.7717/peerj.2224.
  • Hatch, M. H. 1957. The beetles of the Pacific Northwest: Part II: Staphyliniformia. Seattle: University of Washington Press.
  • Hickling, R., D. B. Roy, J. K. Hill, R. Fox, and C. D. Thomas. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12 (3):450–55. doi:10.1111/j.1365-2486.2006.01116.x.
  • Hodkinson, I. D. 2005. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biological Reviews 80 (3):489–513. doi:10.1017/S1464793105006767.
  • Hoekman, D., K. E. LeVan, C. Gibson, G. E. Ball, R. A. Browne, R. L. Davidson, T. L. Erwin, C. B. Knisley, J. R. LaBonte, J. Lundgren, et al. 2017. Design for ground beetle abundance and diversity sampling within the National Ecological Observatory Network. Ecosphere 8. doi:10.1002/ecs2.1744.
  • Høye, T. T., J. J. Bowden, O. L. P. Hansen, R. R. Hansen, T. N. Henriksen, A. Niebuhr, and M. G. Skytte. 2018. Elevation modulates how Arctic arthropod communities are structured along local environmental gradients. Polar Biology 41:1555–65. doi:10.1007/s00300-017-2204-2.
  • Høye, T. T., and L. E. Culler. 2018. Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biology 41:1523–29. doi:10.1007/s00300-018-2370-x.
  • Høye, T. T., and M. C. Forchhammer. 2008. The influence of weather conditions on the activity of high-Arctic arthropods inferred from long-term observations. BMC Ecology 8 (1):1–7. doi:10.1186/1472-6785-8-8.
  • Høye, T. T., J. U. Hammel, T. Fuchs, and S. Toft. 2009. Climate change and sexual size dimorphism in an Arctic spider. Biology Letters 5 (4):542–44. doi:10.1098/rsbl.2009.0169.
  • Høye, T. T., S. Loboda, A. M. Koltz, M. A. Gillespie, J. J. Bowden, and N. M. Schmidt. 2021. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proceedings of the National Academy of Sciences 118 (2):e2002557117. doi:10.1073/pnas.2002557117.
  • Hultén, E. 1968. Flora of Alaska and neighboring territories: A manual of the vascular plants. Vol. 2193. Redwood, CA: Stanford University Press.
  • Inouye, D. W. 2020. Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences 1469:26–37. doi:10.1111/nyas.14104.
  • Janzen, D. J., and W. Hallwachs. 2019. Perspective: Where might be many tropical insects? Biological Conservation 233:102–08. doi:10.1016/j.biocon.2019.02.030.
  • Johnson, P. J. 1986. A new species and a key to the Nearctic species of Curimopsis Ganglbauer (Coleoptera: Byrrhidae). The Coleopterists’ Bulletin 8:37–43.
  • Johnson, P. J. 1991. Taxonomic notes, new records, and a key to the adults of North American Byrrhidae (Coleoptera). Proceedings of the Entomological Society of Washington 93:322–32.
  • Kaston, B. J. 1946. North American spiders of the genus Ctenium. American Museum Novitates 1306:1–19.
  • Kazenel, M. R., K. W. Wright, J. Bettinelli, T. L. Griswold, K. D. Whitney, and J. A. Rudgers. 2020. Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Scientific Reports 10:708. doi:10.1038/s41598-020-57553-2.
  • Kearns, C. A. 1992. Anthophilous fly distribution across an elevation gradient. The American Midland Naturalist 127:172–82. doi:10.2307/2426332.
  • Kenna, D., S. Pawar, and R. J. Gill. 2021. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Functional Ecology 35:2508–22. doi:10.1111/1365-2435.13887.
  • Kerr, J. T., A. Pindar, P. Galpern, L. Packer, S. G. Potts, L. L. Richardson, D. L. Wagner, L. F. Gall, D. S. Sikes, and A. Pantoja. 2015. Climate change impacts on bumblebees converge across continents. Science 349:177–80. doi:10.1126/science.aaa7031.
  • Klimaszewski, J., A. Brunke, D. S. Sikes, M. Pentinsaari, B. Godin, R. P. Webster, A. Davies, C. Bourdon, and A. F. Newton. 2021. A Faunal Review of Aleocharine Beetles in the Rapidly Changing Arctic and Subarctic Regions of North America (Coleoptera, Staphylinidae). Springer Nature. doi:10.1007/978-3-030-68191-3.
  • Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29:115–29. doi:10.1007/BF02289694.
  • Kudo, G. 2014. Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecological Research 29:571–81. doi:10.1007/s11284-013-1108-z.
  • Lawrence, J. F. 1971. Revision of the North American Ciidae (Coleoptera). Bulletin of the Museum of Comparative Zoology 142:419–522.
  • Leech, R. E. 1972. A revision of the Nearctic Amaurobiidae (Arachnida: Araneida). Memoirs of the Entomological Society of Canada 84:1–182. doi:10.4039/entm10484fv.
  • Lee, C. K. F., P. H. Williams, and R. G. Pearson. 2019. Climate change vulnerability higher in Arctic than alpine bumblebees. Frontiers of Biogeography 11:e42455. doi:10.21425/F5FBG42455.
  • Legault, G., and A. E. Weis. 2013. The impact of snow accumulation on a heath spider community in a sub-Arctic landscape. Polar Biology 36:885–94. doi:10.1007/s00300-013-1313-9.
  • Levi, H. W. 1957. The spider genera Enoplognatha, Theridion, and Paidisca in America north of Mexico (Araneae, Theridiidae). Bulletin of the American Museum of Natural History 112:1–124.
  • Levi, H. W. 1962. The spider genera Steatoda and Enoplognatha in America (Araneae, Theridiidae). Psyche 69 (1):11–36. doi:10.1155/1962/42957.
  • Levi, H. W. 1963. American spiders of the genus Theridion (Araneae, Theridiidae). Bulletin of the Museum of Comparative Zoology 129:481–589.
  • Lindroth, C. H. 1969. The ground-beetles (Carabidae, Excl. Cicindelinae) of Canada and Alaska. Parts 1-6. Lund, Sweden: Entomlogiska Sallskapet.
  • Lloyd, A. H., and C. L. Fastie. 2003. Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience 10 (2):176–85. doi:10.1080/11956860.2003.11682765.
  • Loboda, S., J. Savage, C. M. Buddle, N. M. Schmidt, and T. T. Høye. 2017. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41:265–77.
  • Mani, M. S. 1968. Ecology and biogeography of high altitude insects. Vol. 4. Dordrecht, Netherlands: Springer Science & Business Media. doi:10.1007/978-94-017-1339-9.
  • Marusik, Y. M., M. M. Omelko, and A. V. Ponomarev. 2017. A survey of the Holarctic genus Arctella Holm, 1945 (Araneae: Dictynidae, Tricholathysinae), with the description of Tricholathys ovtchinnikovi sp. n. Oriental Insects 51 (3):246–61. doi:10.1080/00305316.2017.1279086.
  • McCabe, L. M., and N. S. Cobb. 2021. From bees to flies: Global shift in pollinator communities along elevation gradients. Frontiers in Ecology and Evolution 8:1–5. doi:10.3389/fevo.2020.626124.
  • McCoy, E. D. 1990. The distribution of insects along elevational gradients. Oikos 58:313–22. doi:10.2307/3545222.
  • McCune, B., and J. B. Grace. 2002. Analysis of ecological communities. Gleneden Beach, OR: MJM Software Design.
  • McCune, B., and D. Keon. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science 13 (4):603–06. doi:10.1111/j.1654-1103.2002.tb02087.x.
  • McCune, B., and M. J. Mefford. 2011. PC-ORD, Multivariate analysis of ecological data, Version 6.22 for Windows edition. Gleneden Beach, Oregon: MJM Software Design.
  • Mekonnen, Z. A., W. J. Riley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahana, A. L. Breen, I. H. Myers-Smith, M. G. Criado, Y. Liu, et al. 2021. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16 (5):053001.
  • Meyer, W. M., III, J. A. Eble, K. Franklin, R. B. McManus, S. L. Brantley, J. Henkel, P. E. Marek, W. E. Hall, C. A. Olson, R. McInroy, et al. 2015. Ground-dwelling arthropod communities of a sky island mountain range in Southeastern Arizona, USA: Obtaining a baseline for assessing the effects of climate change. PLoS One 10 (9):e0135210. doi:10.1371/journal.pone.0135210.
  • Mizel, J. D., J. H. Schmidt, C. L. McIntyre, and C. A. Roland. 2016. Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere 7:e01264. doi:10.1002/ecs2.1264.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Lévesque, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6:045509. doi:10.1088/1748-9326/6/4/045509.
  • O’Brien, C. W. 1970. A taxonomic revision of the weevil genus Dorytomus in North America (Coleoptera: Curculionidae), (University of California Publications in Entomology v. 60). Oakland, CA: University of California Press.
  • Oksanen, J. F., G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, et al. 2018. Vegan: Community Ecology Package. R Package Version 2.4-6.
  • Opell, B. D., and J. A. Beatty. 1976. The Nearctic Hahniidae (Arachnida: Araneae). Bulletin of the Museum of Comparative Zoology 147:393–433.
  • Owens, B. E., and C. E. Carlton. 2015. Berlese vs. Winkler: Comparison of two forest litter Coleoptera extraction methods and the ECOLI (Extraction of Coleoptera in Litter) protocol. The Coleopterists Bulletin 69 (4):645–61. doi:10.1649/0010-065X-69.4.645.
  • Oyen, K. J., S. Giri, and M. Dillon. 2016. Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology 59:52–57. doi:10.1016/j.jtherbio.2016.04.015.
  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual review of ecology, Evolution, and Systematics 37 (1):637–69. doi:10.1146/annurev.ecolsys.37.091305.110100.
  • Parmesan, C., T. L. Root, and M. R. Willig. 2000. Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society 81:443–50. doi:10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2.
  • Pelletier, G., and C. Hébert. 2014. The Cantharidae of eastern Canada and northeastern United States. Canadian Journal of Arthropod Identification 25:1–246.
  • Pelletier, G., and C. Hébert. 2019. The Cryptophagidae of Canada and the northern United States of America. Canadian Journal of Arthropod Identification 40:1–305.
  • Peng, R. K., C. R. Fletcher, and S. L. Sutton. 1992. The effect of microclimate on flying dipterans. International Journal of Biometeorology 36:69–76. doi:10.1007/BF01208916.
  • Petchey, O. L., P. T. McPhearson, T. M. Casey, and P. J. Morin. 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402 (6757):69–72. doi:10.1038/47023.
  • Platnick, N. I., and C. D. Dondale. 1992. The insects and arachnids of Canada, Part 19. The ground spiders of Canada and Alaska (Araneae: Gnaphosidae). Research Branch Agriculture Canada Publication 1875, 1–297.
  • Pyke, G. H., J. D. Thomson, D. W. Inouye, and T. J. Miller. 2016. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7 (3):e01267. doi:10.1002/ecs2.1267.
  • Rasmont, P., M. Franzén, T. Lecocq, A. Harpke, S. P. M. Roberts, J. C. Biesmeijer, L. Castro, B. Ceterberg, L. Dvorák, Ú. Fitzpatrick, et al. 2015. Climatic risk and distribution atlas of European bumblebees. Biorisk 10 ( Special Issue):246. doi:10.3897/biorisk.10.4749.
  • Raven, P. H., and D. L. Wagner. 2021. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS 118:e2002548117. doi:10.1073/pnas.2002548117.
  • R Core Team. 2018. R: A language and environment for statistical computing. https://www.r-project.org/
  • Reiss, R. A., A. C. Ashworth, and D. P. Schwert. 1999. Molecular genetic evidence for the post-Pleistocene divergence of populations of the arctic-alpine ground beetle Amara alpina (Paykull) (Coleoptera: Carabidae). Journal of Biogeography 26:785–94. doi:10.1046/j.1365-2699.1999.00321.x.
  • Rich, M. E., L. Gough, and N. T. Boelman. 2013. Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography 36 (9):994–1003. doi:10.1111/j.1600-0587.2012.00078.x.
  • Roland, C. A., G. Sadoti, E. F. Nicklen, S. A. McAfee, and S. E. Stehn. 2019. A structural equation model linking past and present plant diversity in Alaska: A framework for evaluating future change. Ecosphere 10:e02832. doi:10.1002/ecs2.2832.
  • Roland, C. A., and J. H. Schmidt. 2015. A diverse alpine species pool drives a ‘reversed’ plant species richness-elevation relationship in Interior Alaska. Journal of Biogeography 42 (4):738–50. doi:10.1111/jbi.12446.
  • Roland, C. A., J. J. Schmidt, and E. F. Nicklen. 2013. Landscape-scale patterns in tree occupancy and abundance in subarctic Alaska. Ecological Monographs 83:19–48. doi:10.1890/11-2136.1.
  • Rykken, J. J. 2015. Insect pollinators of Denali National Park and Preserve: A survey of bees (Hymenoptera: Anthophila) and flower flies (Diptera: Syrphidae). Natural Resource Report NPS/DENA/NRR—2015/952, National Park Service, Fort Collins, Colorado.
  • Rykken, J. J. 2017. Insect pollinators of Gates of the Arctic NPP: A preliminary survey of bees (Hymenoptera: Anthophila) and flower flies (Diptera: Syrphidae). Natural Resource Report NPS/GAAR/NRR—2017/1541, National Park Service, Fort Collins, Colorado.
  • Rykken, J. J., A. R. Moldenke, and D. H. Olson. 2007. Headwater riparian forest-floor invertebrate communities associated with alternative forest management practices. Ecological Applications 17:1168–83. doi:10.1890/06-0901.
  • Sánchez-Bayo, F., and K. A. G. Wyckhuys. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232:8–27. doi:10.1016/j.biocon.2019.01.020.
  • Seibold, S., C. Bässler, P. Baldrian, L. Reinhard, S. Thorn, M. D. Ulyshen, I. Weiß, and J. Müller. 2016. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biological Conservation 204:181–88. doi:10.1016/j.biocon.2016.09.031.
  • Serreze, M. C., J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46 (1–2):159–207. doi:10.1023/A:1005504031923.
  • Sheffield, C. S., C. Ratti, L. Packer, and T. Griswold. 2011. Leafcutter and mason bees of the Genus Megachile Latreille (Hymenoptera: Megachilidae) in Canada and Alaska. Canadian Journal of Arthropod Identification 18. doi:10.3752/cjai.2011.18.
  • Skevington, J. H., M. M. Locke, A. D. Young, K. Moran, W. J. Crins, and S. A. Marshall. 2019. Field guide to the flower flies of northeastern North America. Princeton, New Jersey: Princeton University Press. doi:10.2307/j.ctv7xbrvz.
  • Slatyer, R. A., and S. D. Schoville. 2016. Physiological limits along an elevational gradient in a radiation of montane ground beetles. PLOS ONE 11:e0151959. doi:10.1371/journal.pone.0151959.
  • Smetana, A. 1988. Review of the family Hydrophilidae of Canada and Alaska (Coleoptera). Memoirs of the Entomological Society of Canada 142:343–356. doi:10.4039/entm120142fv.
  • Sommaggio, D. 1999. Syrphidae: Can they be used as environmental bioindicators? In Invertebrate biodiversity as bioindicators of sustainable landscapes, and M. G. Paoletti. New York, NY: Elsevier Science. doi:10.1016/B978-0-444-50019-9.50019-4.
  • Soroye, P., T. Newbold, and J. Kerr. 2020. Climate change contributes to widespread declines among bumble bees across continents. Science 367:685–88. doi:10.1126/science.aax8591.
  • Sousanes, P. J., and K. Hill. 2016. Weather and climate summary Denali National Park and Preserve, Summer 2016. Central Alaska Network: National Park Service, Alaska Region Inventory and Monitoring Program.
  • Sousanes, P. J., and K. Hill. 2017. Weather and climate summary Denali National Park and Preserve, Summer 2017. Central Alaska Network: National Park Service, Alaska Region Inventory and Monitoring Program.
  • Sousanes, P. J., and K. Hill. 2018. Weather and climate summary Denali National Park and Preserve, Summer 2018. Central Alaska Network: National Park Service, Alaska Region Inventory and Monitoring Program.
  • Sousanes, P. J., and K. Hill. 2019. Weather and climate summary Denali National Park and Preserve, Summer 2019. Central Alaska Network: National Park Service, Alaska Region Inventory and Monitoring Program.
  • Sousanes, P. J., and K. Hill. 2020. Annual climate summary 2018: Central Alaska Network. Fort Collins, Colorado: National Park Service.
  • Stephen, W. P., and S. Rao. 2005. Unscented color traps for non-Apis bees. Journal of the Kansas Entomological Society 78:373–80. doi:10.2317/0410.03.1.
  • Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and R. B. Huey. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences 111 (15):5610–15. doi:10.1073/pnas.1316145111.
  • Sunday, J. M., J. M. Bennett, P. Calosi, S. Clusella-Trullas, S. Gravel, A. L. Hargreaves, F. P. Leiva, W. C. E. P. Verberk, M. Á. Olalla-Tárraga, and I. Morales-Castilla. 2019. Thermal tolerance patterns across latitude and elevation. Philosophical Transactions of the Royal Society B 374:20190036. doi:10.1098/rstb.2019.0036.
  • Swanson, D. K., P. J. Sousanes, and K. Hill. 2021. Increased mean annual temperatures in 2014–2019 indicate permafrost thaw in Alaskan national parks. Arctic, Antarctic, and Alpine Research 53:1–19. doi:10.1080/15230430.2020.1859435.f.
  • Taylor, L. R. 1963. Analysis of the effect of temperature on insects in flight. Journal of Animal Ecology 32:99–117. doi:10.2307/2520.
  • Thomas, M. C. 2000. American Beetles: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia, Vol. 1. Boca Raton, FL: CRC Press.
  • Topping, C. J., and K. D. Sunderland. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. The Journal of Applied Ecology 29 (2):485–91. doi:10.2307/2404516.
  • Ubick, D., N. Dupérré, and V. D. Roth. 2005. American Arachnological Society. Spiders of North America: An Identification Manual. Poughkeepsie, NY: American Arachnological Society.
  • Uetz, G. W. 1979. The influence of variation in litter habitats on spider communities. Oecologia 40 (1):29–42. doi:10.1007/BF00388808.
  • Viterbi, R., C. Cerrato, B. Bassano, R. Bionda, A. von Hardenberg, A. Provenzle, and G. Bogliani. 2013. Patterns of biodiversity in the northwestern Italian Alps: A multi-taxa approach. Community Ecology 14:18–30. doi:10.1556/ComEc.14.2013.1.3.
  • Vogt, F. D., B. Heinrich, T. O. Dabolt, and H. L. McBath. 1994. Ovary development and colony founding in subarctic and temperate-zone bumblebee queens. Canadian Journal of Zoology 72:1551–56. doi:10.1139/z94-206.
  • Wagner, D. L., E. M. Grames, M. L. Forister, M. R. Berenbaum, and D. Stopak. 2021. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118:e2023989118. doi:10.1073/pnas.2023989118.
  • Wang, T., E. M. Campbell, G. A. O’Neill, and S. N. Aitken. 2012. Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. Forest Ecology and Management 279:128–40. doi:10.1016/j.foreco.2012.05.034.
  • Whitman-Zai, J., M. Francis, M. Geick, and P. E. Cushing. 2015. Revision and morphological phylogenetic analysis of the funnel web spider genus Agelenopsis (Araneae: Agelenidae). Journal of Arachnology 43:1–25. doi:10.1636/k14-35.1.
  • Wilcox, J. A. 1972. A review of the North American Chrysomeline Leaf Beetles (Coleoptera: Chrysomelidae). New York State Museum Bulletin. Albany: The University of the State of New York.
  • Williams, P. H., M. V. Berezin, S. G. Cannings, B. Cederberg, F. Ødegaard, C. Rasmussen, L. L. Richardson, J. Rykken, C. S. Sheffield, C. Thanoosing, et al. 2019. The Arctic and alpine bumblebees of the subgenus Alpinobombus revised from integrative assessment of species’ gene coalescents and morphology (Hymenoptera, Apidae, Bombus). Zootaxa 4625:1–68. doi:10.11646/zootaxa.4625.1.1.
  • Williams, P. H., S. G. Cannings, and C. S. Sheffield. 2016. Cryptic subarctic diversity: A new bumblebee species from the Yukon and Alaska (Hymenoptera: Apidae). Journal of Natural History 50 (45–46):2881–93. doi:10.1080/00222933.2016.1214294.
  • Williams, P. H., R. W. Thorp, L. L. Richardson, and S. R. Colla. 2014. Bumble bees of North America. Princeton, New Jersey: Princeton University Press.
  • Wilson, R. J., D. Gutiérrez, J. Gutiérrez,and, and V. J. Monserrat. 2007. An elevation shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology 13 (9):1873–87. doi:10.1111/j.1365-2486.2007.01418.x.
  • Yip, E. C., and L. S. Rayor. 2014. Maternal care and subsocial behaviour in spiders: Subsocial spider review. Biological Reviews 89:427–49. doi:10.1111/brv.12060.
  • Zurbuchen, A., L. Landert, J. Klaiber, A. Müller, S. Hein, and S. Dorn. 2010. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biological Conservation 143:669–76. doi:10.1016/j.biocon.2009.12.003.