1,442
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating ten years of warming and enhanced snow depth on nutrient availability and greenhouse gas fluxes in a High Arctic ecosystem

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2178428 | Received 09 Mar 2022, Accepted 03 Feb 2023, Published online: 22 Mar 2023

References

  • Aerts, R., J. H. C. Cornelissen, and E. Dorrepaal. 2006. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182 (1–2):65–12. doi:10.1007/s11258-005-9031-1.
  • Andresen, C. G., M. J. Lara, C. E. Tweedie, and V. L. Lougheed. 2017. Rising plant-mediated methane emissions from Arctic wetlands. Global Change Biology 23 (3):1128–39. doi:10.1111/gcb.13469.
  • Arctic Monitoring and Assessment Programme. 2021. Arctic climate change update 2021: Key trends and impacts. Summary for policy-makers. Tromsø, Norway: Arctic Monitoring and Assessment Programme (AMAP).
  • Arruda, S. Z. 2016. Impacts of enhanced temperature and snow deposition on senescence date, vegetation cover, and CO2 exchange in a Canadian High Arctic mesic ecosystem. Master’s Thesis, Queen’s University.
  • Beel, C., J. K. Heslop, J. F. Orwin, M. A. Pope, A. J. Schevers, J. K. Y. Hung, M. J. Lafrenière, and S. F. Lamoureux. 2021. Emerging dominance of summer rainfall driving High Arctic terrestrial-aquatic connectivity. Nature Communications 12 (1):1448. doi:10.1038/s41467-021-21759-3.
  • Beel, C., S. F. Lamoureux, J. F. Orwin, M. A. Pope, M. J. Lafrenière, and N. A. Scott. 2020. Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes. Scientific Reports 10 (1):11836. doi:10.1038/s41598-020-68824-3.
  • Biasi, C., H. Meyer, O. Rusalimova, R. Hämmerle, C. Kaiser, C. Baranyi, H. Daims, N. Lashchinsky, P. Barsukov, and A. Richter. 2008. Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant and Soil 307 (1–2):191–205. doi:10.1007/s11104-008-9596-2.
  • Binkley, D., R. Stottlemyer, F. Suarez, and J. Cortina. 1994. Soil nitrogen availability in some Arctic ecosystems in northwest Alaska: Responses to temperature and moisture. Ecoscience 1 (1):64–70. doi:10.1080/11956860.1994.11682229.
  • Bintanja, R., and O. Andry. 2017. Towards a rain-dominated Arctic. Nature Climate Change 7 (4):263–67. doi:10.1038/nclimate3240.
  • Bintanja, R., and E. C. van der Linden. 2013. The changing seasonal climate in the Arctic. Scientific Reports 3:1–8. doi:10.1038/srep01556.
  • Bjorkman, A. D., M. García Criado, I. H. Myers-Smith, V. Ravolainen, I. S. Jónsdóttir, K. B. Westergaard, J. P. Lawler, M. Aronsson, B. Bennett, H. Gardfjell, et al. 2020. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49 (3):678–92. doi:10.1007/s13280-019-01161-6.
  • Bodelier, P. L. E., and H. J. Laanbroek. 2004. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology 47 (3):265–77. doi:10.1016/S0168-6496(03).
  • Bokhorst, S., A. Huiskes, R. Aerts, P. Convey, E. J. Cooper, L. Dalen, B. Erschbamer, J. Gudmundsson, A. Hofgaard, R. D. Hollister, et al. 2013. Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology 19 (1):64–74. doi:10.1111/gcb.12028.
  • Buckeridge, K. M., and P. Grogan. 2008. Deepened snow alters soil microbial nutrient limitations in Arctic birch hummock tundra. Applied Soil Ecology 39 (2):210–22. doi:10.1016/j.apsoil.2007.12.010.
  • Edwards, M., and G. H. R. Henry. 2016. The effects of long-term experimental warming on the structure of three High Arctic plant communities. Journal of Vegetation Science 27 (5):904–13. doi:10.1111/jvs.12417.
  • Grogan, P., and I. S. Chapin. 2000. Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in Arctic tundra. Oecologia 125 (4):512–20. doi:10.1007/s004420000490.
  • Hartley, A. E., C. Neill, J. M. Melillo, R. Crabtree, F. P. Bowles, A. E. Hartley, C. Neill, J. M. Melillo, R. Crabtree, F. P. Bowles, et al. 1999. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath. Oikos 86 (2):331–43. doi:10.2307/3546450.
  • Henry, G. H. R., and U. Molau. 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology 3 (SUPPL. 1):1–9. doi:10.1111/j.1365-2486.1997.gcb132.x.
  • Hodgson, D. A., J. S. Vincent, and J. G. Fyles. 1984. Quaternary geology of central Melville Island, Northwest Territories. In Geological survey of Canada, Paper 83-1. Ottawa, Canada: Geological Survey of Canada. doi:10.4095/119784.
  • Huemmrich, K. F., G. Kinoshita, J. A. Gamon, S. Houston, H. Kwon, and W. C. Oechel. 2010. Tundra carbon balance under varying temperature and moisture regimes. Journal of Geophysical Research 115:1–8. doi:10.1029/2009jg001237.
  • Hung, J. K. Y., and P. Treitz. 2020. Environmental land-cover classification for integrated watershed studies: Cape Bounty, Melville Island, Nunavut. Arctic Science 6 (4):404–22. doi:10.1139/as-2019-0029.
  • Hutchinson, G. L., and A. R. Moisier. 1981. Improved soil cover method for field measurements of nitrous oxide fluxes. Soil Science Society of Americal Journal 45 (2):311–16. doi:10.2136/sssaj1981.03615995004500020017x.
  • IBM Corp. 2019. IBM SPSS statistics for windows, version 26.0. Armonk, NY: IBM Corp.
  • Lamb, E. G., S. Han, B. D. Lanoil, G. H. R. Henry, M. E. Brummell, S. Banerjee, and S. D. Siciliano. 2011. A High Arctic soil ecosystem resists long-term environmental manipulations. Global Change Biology 17 (10):3187–94. doi:10.1111/j.1365-2486.2011.02431.x.
  • Lavoie, M., M. C. Mack, and E. A. G. Schuur. 2011. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan Arctic and boreal soils. Journal of Geophysical Research: Biogeosciences 116 (3):1–14. doi:10.1029/2010JG001629.
  • Leffler, A. J., and J. M. Welker. 2013. Long-term increases in snow pack elevate leaf N and photosynthesis in Salix arctica: Responses to a snow fence experiment in the High Arctic of NW Greenland. Environmental Research Letters 8 (2):025023. doi:10.1088/1748-9326/8/2/025023.
  • Makoto, K. 2014. Tips for the next phase of winter climate-change study in plant-soil systems. Ecological Research 29 (4):511–15. doi:10.1007/s11284-014-1171-0.
  • Marion, G. M., G. H. R. Henry, D. W. Freckman, J. Johnstone, G. Jones, M. H. Jones, E. Lévesque, U. Molau, P. Mølgaard, A. N. Parsons, et al. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology 3 (SUPPL. 1):20–32. doi:10.1111/j.1365-2486.1997.gcb136.x.
  • Molau, U., and P. Mølgaard. 1996. International tundra experiment (ITEX) manual. Copenhagen, Denmark: Danish Polar Center.
  • Mörsdorf, M. A., N. S. Baggesen, N. G. Yoccoz, A. Michelsen, B. Elberling, P. L. Ambus, and E. J. Cooper. 2019. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biology and Biochemistry 135 (January):222–34. doi:10.1016/j.soilbio.2019.05.009.
  • Natali, S. M., E. A. G. Schuur, M. Mauritz, J. D. Schade, G. Celis, K. G. Crummer, C. Johnston, J. Krapek, E. Pegoraro, V. G. Salmon, et al. 2015. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences 120 (3):525–37. doi:10.1002/2014JG002872.
  • Natali, S. M., E. A. G. Schuur, C. Trucco, C. E. Hicks Pries, K. G. Crummer, and A. F. Baron Lopez. 2011. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology 17 (3):1394–407. doi:10.1111/j.1365-2486.2010.02303.x.
  • Oberbauer, S. F., C. E. Tweedie, J. M. Welker, J. T. Fahnestock, G. H. R. Henry, P. J. Webber, R. D. Hollister, M. D. Walker, A. Kuchy, E. Elmore, et al. 2007. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs 77 (2):221–38. doi:10.1890/06-0649.
  • Pansu, M., and J. Gautheyrou. 2006. Inorganic forms of nitrogen. In Handbook of soil analysis: Mineralogical, organic and inorganic methods, 767–792. Heidelberg, Germany: Springer Berlin. doi:10.1007/978-3-540-31211-6.
  • Park, T., S. Ganguly, H. Tømmervik, E. S. Euskirchen, K.-A. Høgda, S. R. Karlsen, V. Brovkin, R. R. Nemani, and R. B. Myneni. 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters 11 (8):084001. doi:10.1088/1748-9326/11/8/084001.
  • Qian, P., and J. J. Schoenau. 2005. Use of ion-exchange membrane to assess nitrogen-supply power of soils. Journal of Plant Nutrition 28 (12):2193–200. doi:10.1080/01904160500324717.
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Nature Communications Earth and Environment 3 (168):1–10. doi:10.1038/s43247-022-00498-3.
  • Ravn, N. R., B. Elberling, and A. Michelsen. 2020. Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal. Soil Biology and Biochemistry 142 (November 2019):107698. doi:10.1016/j.soilbio.2019.107698.
  • Richardson, S. J., M. C. Press, A. N. Parsons, and S. E. Hartley. 2019. How do nutrients and warming impact on plant communities and their insect herbivores? A 9‐year study from a sub‐Arctic heath. British Ecological Society 90 (3):544–56.
  • Romanovsky, V. E., and T. E. Osterkamp. 2000. Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost and Periglacial Processes 11 (3):219–39. doi:10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7
  • Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, J. Gurevitch, R. Alward, C. Beier, et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 (4):543–62. doi:10.1007/s004420000544.
  • Salmon, V. G., P. Soucy, M. Mauritz, G. Celis, S. M. Natali, M. C. Mack, and E. A. G. Schuur. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology 22 (5):1927–41. doi:10.1111/gcb.13204.
  • Schimel, J. P., C. Bilbrough, and J. M. Welker. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry 36 (2):217–27. doi:10.1016/j.soilbio.2003.09.008.
  • Schmidt, I. K., S. Jonasson, and A. Michelsen. 1999. Mineralization and microbial immobilization of N and P in Arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology 11 (2–3):147–60. doi:10.1016/S0929-1393(98).
  • Schuur, E. A. G., and M. C. Mack. 2018. Ecological response to permafrost thaw and consequences for local and global ecosystem services. Annual Review of Ecology, Evolution, and Systematics 49:279–301. doi:10.1146/annurev-ecolsys-121415-032349.
  • Shaver, G. R., W. D. Billings, F. S. Chapin, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter. 1992. Global change and the carbon balance of arctic ecosystems. BioScience 42 (6):433–41. doi:10.2307/1311862.
  • Shaver, G. R., L. C. Johnson, D. H. Cades, G. Murray, J. A. Laundre, E. B. Rastetter, K. J. Nadelhoffer, and A. E. Giblin. 1998. Biomass and CO2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecological Monographs 68 (1):75–97. doi:10.1890/0012-9615(1998)068[0075:.
  • Shen, Z. X., J. W. Wang, W. Sun, S. W. Li, G. Fu, X. Z. Zhang, Y. J. Zhang, C. Q. Yu, P. L. Shi, and Y. T. He. 2016. The soil drying along the increase of warming masks the relation between temperature and soil respiration in an alpine meadow of northern Tibet. Polish Journal of Ecology 64 (1):125–29. doi:10.3161/15052249PJE2016.64.1.011.
  • Sistla, S. A., J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel. 2013. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497 (7451):615–17. doi:10.1038/nature12129.
  • van der Kolk, H. J., M. M. P. D. Heijmans, J. van Huissteden, J. W. M. Pullens, and F. Berendse. 2016. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 13 (22):6229–45. doi:10.5194/bg-13-6229-2016.
  • Voigt, C., R. E. Lamprecht, M. E. Marushchak, S. E. Lind, A. Novakovskiy, M. Aurela, P. J. Martikainen, and C. Biasi. 2017. Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology 23 (8):3121–38. doi:10.1111/gcb.13563.
  • Wagner, I., J. K. Y. Hung, A. Neil, and N. A. Scott. 2019. Net greenhouse gas fluxes from three High Arctic plant communities along a moisture gradient. Arctic Science 5 (4):185–201. doi:10.1139/as-2018-0018.
  • Weijers, S., F. Wagner-Cremer, U. Sass-Klaassen, R. Broekman, and J. Rozema. 2013. Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. Holocene 23 (5):721–31. doi:10.1177/0959683612470178.
  • Welker, J. M., J. T. Fahnestock, G. H. R. Henry, K. W. O’Dea, and R. A. Chimner. 2004. CO2 exchange in three Canadian High Arctic ecosystems: Response to long-term experimental warming. Global Change Biology 10 (12):1981–95. doi:10.1111/j.1365-2486.2004.00857.x.
  • Welker, J. M., J. T. Fahnestock, and M. H. Jones. 2000. Annual CO2 flux in dry and moist Arctic tundra: Field responses to increases in summer temperatures and winter snow depth. Climatic Change 44 (1–2):139–50.
  • Wilcox, E. J., D. Keim, T. de Jong, B. Walker, O. Sonnentag, A. E. Sniderhan, P. Mann, and P. Marsh. 2019. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arctic Science 5 (4):202–17. doi:10.1139/as-2018-0028.
  • Wilson, K. S., and E. R. Humphreys. 2010. Carbon dioxide and methane fluxes from Arctic mudboils. Canadian Journal of Soil Science 90 (3):441–49. doi:10.4141/CJSS09073.
  • Wipf, S., and C. Rixen. 2010. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research 29 (1):95–109. doi:10.1111/j.1751-8369.2010.00153.x.
  • Xu, W., A. Prieme, E. J. Cooper, M. A. Mörsdorf, P. Semenchuk, B. Elberling, P. Grogan, and P. L. Ambus. 2021. Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry 160:108356. doi:10.1016/j.soilbio.2021.108356.