1,253
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Glacier-specific factors drive differing seasonal and interannual dynamics of Nunatakassaap Sermia and Illullip Sermia, Greenland

, &
Article: 2186456 | Received 22 Apr 2021, Accepted 22 Feb 2023, Published online: 27 Mar 2023

References

  • Amundson, J. M., and J. Burton. 2018. Quasi‐static granular flow of ice mélange. Journal of Geophysical Research: Earth Surface 123 (9):2243–22. doi:10.1029/2018JF004685.
  • Amundson, J. M., M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. Journal of Geophysical Research 115 (F0):1005. doi:10.1029/2009JF001405.
  • Amundson, J. M., M. Fahnestock, M. Truffer, V. Tsai, and M. West, 2008: Analysis of seismic waveforms generated during iceberg calving events, Jakobshavn Isbræ, Greenland. American Geophysical Union, Fall Meeting. San Francisco, CA, USA. Abstract #C22A-02.
  • Andersen, M. L., L. Stenseng, H. Skourup, W. Colgan, S. A. Khan, S. S. Kristensen, S. B. Andersen, J. E. Box, A. P. Ahlstrøm, and X. Fettweis. 2015. Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters 40:989–95.
  • Bartholomaus, T. C., L. A. Stearns, D. A. Sutherland, E. L. Shroyer, J. D. Nash, R. T. Walker, G. Catania, D. Felikson, D. Carroll, M. J. Fried, et al. 2016. Contrasts in the response of adjacent fjords and glaciers to ice-sheet surface melt in West Greenland. Annals of Glaciology 57 (73):25–38. doi:10.1017/aog.2016.19.
  • Benn, D. I., C. R. Warren, and R. H. Mottram. 2007. Calving processes and the dynamics of calving glaciers. Earth Science Reviews 82 (3–4):143–79.
  • Bindschadler, R. 1983. The importance of pressurized subglacial water in separation and sliding at the glacier bed. Journal of Glaciology 29 (101):3–19. doi:10.1017/S0022143000005104.
  • Box, J. E. 2013. Greenland ice sheet mass balance reconstruction. Part II: Surface mass balance (1840–2010). Journal of Climate 26 (18):6974–89. doi:10.1175/JCLI-D-12-00518.1.
  • Box, J. E., M. Sharp, G. Aðalgeirsdóttir, M. Ananicheva, M. L. Andersen, J. R. Carr, C. Clason, W. Colgan, L. Copland, A. F. Glazovsky, et al. 2017. Changes to Arctic land ice. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, ed. J. E. Box and M. Sharp, 137–68. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP).
  • Brown, C., W. Sikonia, A. Post, L. Rasmussen, and M. Meier. 1983. Two calving laws for grounded iceberg-calving glaciers. Annals of Glaciology 4:295–295. doi:10.3189/S0260305500005644.
  • Bunce, C., J. R. Carr, P. W. Nienow, N. Ross, and R. Killick. 2018. Ice front change of marine-terminating outlet glaciers in northwest and southeast Greenland during the 21st century. Journal of Glaciology 64 (246):523–35. doi:10.1017/jog.2018.44.
  • Carr, J. R., C. R. Stokes, and A. Vieli. 2013. Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing: Twenty years of rapid change. Progress in Physical Geography 37 (4):435–66.
  • Carr, J. R., C. R. Stokes, and A. Vieli. 2017. Threefold increase in marine-terminating outlet glacier retreat rates across the Atlantic Arctic: 1992–2010. Annals of Glaciology 58 (74):72–91. doi:10.1017/aog.2017.3.
  • Carr, J. R., A. Vieli, and C. R. Stokes. 2013. Climatic, oceanic and topographic controls on marine-terminating outlet glacier behavior in north-west Greenland at seasonal to interannual timescales. Journal of Geophysical Research 118 (3):1210–26. doi:10.1002/jgrf.20088.
  • Carr, J. R., A. Vieli, C. Stokes, S. Jamieson, S. Palmer, P. Christoffersen, J. Dowdeswell, F. Nick, D. Blankenship, and D. Young. 2015. Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland. Journal of Glaciology 61 (225):137–50. doi:10.3189/2015JoG14J128.
  • Catania, G., L. Stearns, T. Moon, E. Enderlin, and R. Jackson. 2020. Future evolution of Greenland’s marine‐terminating outlet glaciers. Journal of Geophysical Research: Earth Surface 125 (2). doi:10.1029/2019JF005206.
  • Catania, G., L. Stearns, D. Sutherland, M. Fried, T. Bartholomaus, M. Morlighem, E. Shroyer, and J. Nash. 2018. Geometric controls on tidewater glacier retreat in central western Greenland. Journal of Geophysical Research: Earth Surface 123 (8):2024–38. doi:10.1029/2017JF004499.
  • Cuffey, K. M., and W. S. B. Paterson. 2010. The physics of glaciers. Burlington, MA: Elsevier.
  • Echelmeyer, K. A., W. D. Harrison, C. Larsen, and J. E. Mitchell. 1994. The role of the margins in the dynamics of an active ice stream. Journal of Glaciology 40 (136):527–38. doi:10.1017/S0022143000012417.
  • Enderlin, E. M., and I. M. Howat. 2013. Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010). Journal of Glaciology 59 (213):67–75. doi:10.3189/2013JoG12J049.
  • Enderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters 41 (3):2013GL059010. doi:10.1002/2013GL059010.
  • Enderlin, E. M., I. M. Howat, and A. Vieli. 2013. High sensitivity of tidewater outlet glacier dynamics to shape. The Cryosphere 7 (3):1007–15. doi:10.5194/tc-7-1007-2013.
  • Fettweis, X., B. Franco, M. Tedesco, J. van Angelen, J. M. V. D. B. Lenaerts, and H. Gallée. 2013. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere 7 (2):469–89. doi:10.5194/tc-7-469-2013.
  • Gudmundsson, G. H., J. Krug, G. Durand, L. Favier, and O. Gagliardini. 2012. The stability of grounding lines on retrograde slopes. The Cryosphere 6 (6):1497–505. doi:10.5194/tc-6-1497-2012.
  • Higgins, A. K. 1988. Glacier velocities in North and North-East Greenland. Grønlands Geologiske Undersogelse Rapport 140:102–05. doi:10.34194/rapggu.v140.8046.
  • Higgins, A. K. 1990. North Greenland glacier velocities and calf ice production. Polarforschung 60 (1):1–23.
  • Hill, E. A., R. J. Carr, and C. R. Stokes. 2017. A review of recent changes in major marine-terminating outlet glaciers in northern Greenland. Frontiers in Earth Science 4. doi:10.3389/feart.2016.00111.
  • Hill, E. A., J. R. Carr, C. R. Stokes, and G. H. Gudmundsson. 2018. Dynamic changes in outlet glaciers in northern Greenland from 1948 to 2015. The Cryosphere 12 (10):3243–63. doi:10.5194/tc-12-3243-2018.
  • Hill, E. A., G. H. Gudmundsson, J. R. Carr, and C. R. Stokes. 2018. Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events. The Cryosphere 12 (12):3907–21. doi:10.5194/tc-12-3907-2018.
  • Hill, E. A., G. H. Gudmundsson, J. R. Carr, and C. R. Stokes. 2021. Twenty-first century response of Petermann Glacier, northwest Greenland to ice shelf loss. Journal of Glaciology 67 (261):147–57. doi:10.1017/jog.2020.97.
  • Holland, D. M., R. H. D. Y. B. Thomas, M. H. Ribergaard, and B. Lyberth. 2008. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience 1:659–664. doi:10.1038/ngeo316.
  • Howat, I. M., and A. Eddy. 2011. Multi-decadal retreat of Greenland’s marine-terminating glaciers. Journal of Glaciology 57 (203):389–96. doi:10.3189/002214311796905631.
  • Howat, I. M., I. Joughin, M. Fahnestock, B. E. Smith, and T. Scambos. 2008. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000-2006; Ice dynamics and coupling to climate. Journal of Glaciology 54 (187):1–14. doi:10.3189/002214308786570908.
  • Howat, I. M., I. Joughin, and T. A. Scambos. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315 (5818):1559–61. doi:10.1126/science.1138478.
  • Howat, I. M., I. Joughin, S. Tulaczyk, and S. P. Gogineni. 2005. Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophysical Research Letters 32 (22). Retrieved from https://escholarship.org/uc/item/5gp0z2kx
  • The IMBIE Team. 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579(7798):233–39. doi:10.1038/s41586-019-1855-2.
  • Jamieson, S. S. R., A. Vieli, S. J. Livingstone, C. Ó Cofaigh, C. R. Stokes, C.-D. Hillenbrand, and J. Dowdeswell. 2012. Ice stream stability on a reverse bed slope. Nature Geoscience 5 (11):799–802. doi:10.1038/ngeo1600.
  • Johnson, H. L., A. Münchow, K. K. Falkner, and H. Melling. 2011. Ocean circulation and properties in Petermann Fjord, Greenland. Journal of Geophysical Research 116 (C1). doi:10.1029/2010JC006519.
  • Joughin, I., W. Abdalati, and M. Fahnestock. 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432 (2):608–10. doi:10.1038/nature03130.
  • Joughin, I., and R. B. Alley. 2011. Stability of the West Antarctic ice sheet in a warming world. Nature Geoscience 4:506–13. doi:10.1038/ngeo1194.
  • Joughin, I., I. M. Howat, M. Fahnestock, B. Smith, W. Krabill, R. B. Alley, H. Stern, and M. Truffer. 2008. Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research 113 (F4). doi:10.1029/2008JF001023.
  • Joughin, I., I. Howat, B. Smith, and T. Scambos. 2021. MEaSUREs greenland ice velocity: Selected glacier site velocity maps from InSAR, version 4 [data set]. NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA. https://nsidc.org/data/nsidc-0481/versions/4
  • Joughin, I., D. E. Shean, B. E. Smith, and D. Floricioiu. 2020. A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidity. The Cryosphere 14 (1):211. doi:10.5194/tc-14-211-2020.
  • Joughin, I., B. E. Smith, I. M. Howat, D. Floricioiu, R. B. Alley, M. Truffer, and M. Fahnestock. 2012. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis. Journal of Geophysical Research 117 (F2). doi:10.1029/2011JF002110.
  • Joughin, I., B. E. Smith, I. Howat, and T. Scambos. 2010. MEaSUREs Greenland ice sheet velocity map from InSAR data. Boulder, CO: National Snow and Ice Data Center. Digital media.
  • Joughin, I., B. Smith, I. Howat, and T. Scambos. 2015. MEaSures Greenland ice sheet velocity map from InSAR data, Version 2, updated 2018. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi:10.5067/OC7B04ZM9G6Q.
  • Joughin, I., B. Smith, I. M. Howat, T. Scambos, and T. Moon. 2010. Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology 56 (197):415–30. doi:10.3189/002214310792447734.
  • Joughin, I., B. Smith, D. Shean, and D. Floricioiu. 2014. Brief communication: Further summer speedup of Jakobshavn Isbræ. The Cryosphere 98:209–14. doi:10.5194/tc-8-209-2014.
  • Khan, S. A., J. Wahr, M. Bevis, I. Velicogna, and E. Kendrick. 2010. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophysical Research Letters 37 (6). doi:10.1029/2010GL042460.
  • Khazendar, A., I. G. Fenty, D. Carroll, A. Gardner, C. M. Lee, I. Fukumori, O. Wang, H. Zhang, H. Seroussi, and D. Moller. 2019. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience 12 (4):277–83. doi:10.1038/s41561-019-0329-3.
  • Kneib-Walter, A., M. P. Lüthi, M. Funk, G. Jouvet, and A. Vieli. 2022. Observational constraints on the sensitivity of two calving glaciers to external forcings. Journal of Glaciology 1–16. doi:10.1017/jog.2022.74.
  • Kneib-Walter, A., M. P. Lüthi, L. Moreau, and A. Vieli. 2021. Drivers of recurring seasonal cycle of glacier calving styles and patterns. Frontiers in Earth Science 9:667717. doi:10.3389/feart.2021.667717.
  • Lea, J. M. 2018. The Google Earth Engine Digitisation Tool (GEEDiT) and the Margin change Quantification Tool (MaQiT) – Simple tools for the rapid mapping and quantification of changing earth surface margins. Earth Surface Dynamics 6 (3):551–61. doi:10.5194/esurf-6-551-2018.
  • McFadden, E. M., I. M. Howat, I. Joughin, B. Smith, and Y. Ahn. 2011. Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). Journal of Geophysical Research 116 (F2). doi:10.1029/2010JF001757.
  • Meier, M. F., and A. Post. 1987. Fast tidewater glaciers. Journal of Geophysical Research 92 (B9):9051–58 doi:10.1029/JB092iB09p09051.
  • Meier, M. F., and N. Reeh. 1994. Columbia Glacier during rapid retreat: Interactions between glacier flow and iceberg calving dynamics. In Workshop on the Calving Rate of West Greenland Glaciers in Response to Climate Change conference proceedings, 63–83. Copenhagen.
  • Moon, T., and I. Joughin. 2008. Changes in ice-front position on Greenland’s outlet glaciers from 1992 to 2007. Journal of Geophysical Research 113 (F2). doi:10.1029/2007JF000927.
  • Moon, T., I. Joughin, and B. E. Smith. 2015. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journal of Geophysical Research: Earth Surface 120 (5):818–33. doi:10.1002/2015JF003494.
  • Moon, T., I. Joughin, B. E. Smith, and I. M. Howat. 2012. 21st-century evolution of Greenland outlet glacier velocities. Science 336 (6081):576–78. doi:10.1126/science.1219985.
  • Moon, T., I. Joughin, B. Smith, M. van den Broeke, W. van de Berg, B. Noël, and M. Usher. 2014. Distinct patterns of seasonal Greenland glacier velocity. Geophysical Research Letters 40 (20):7209–16. doi:10.1002/2014GL061836.
  • Morlighem, M., C. N. Williams, E. Rignot, L. An, J. E. Arndt, J. L. Bamber, G. Catania, et al. 2017. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters 44 (21): 11051–61. doi:10.1002/2017GL074954.
  • Motyka, R. J., M. Truffer, M. Fahnestock, J. Mortensen, S. Rysgaar, and I. M. Howat. 2011. Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. Journal of Geophysical Research 166 (F1). doi:10.1029/2009JF001632.
  • Mouginot, J., E. Rignot, A. A. Bjørk, M. Van Den Broeke, R. Millan, M. Morlighem, B. Noël, B. Scheuchl, and M. Wood. 2019. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences 116 (19):9239–44. doi:10.1073/pnas.1904242116.
  • Mouginot, J., E. Rignot, B. Scheuchl, I. Fenty, A. Khazendar, M. Morlighem, A. Buzzi, and J. Paden. 2015. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science 350 (6266):1357. doi:10.1126/science.aac7111.
  • Noh, M.-J., and I. M. Howat. 2015. Automated stereo-photogrammetric DEM generation at high latitudes: Surface Extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing 52 (2):198–217. doi:10.1080/15481603.2015.1008621.
  • O’Leary, M., and P. Christoffersen. 2013. Calving on tidewater glaciers amplified by submarine frontal melting. The Cryosphere 7 (1):119–28. doi:10.5194/tc-7-119-2013.
  • Payne, A. J., A. Vieli, A. P. Shepherd, D. J. Wingham, and E. Rignot. 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophysical Research Letters 31 (23). doi:10.1029/2004GL021284.
  • Pelto, M. S., and C. R. Warren. 1991. Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of Glaciology 15: 115–18. doi:10.3189/S0260305500009617.
  • Pfeffer, W. T. 2007. A simple mechanism for irreversible tidewater glacier retreat. Journal of Geophysical Research 112 (F3). doi:10.1029/2006JF000590.
  • Pfeffer, W. T., J. Harper, and S. O’Neel. 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321 (5894):1340–43. doi:10.1126/science.1159099.
  • Porter, D. F., K. J. Tinto, A. Boghosian, J. R. Cochran, R. E. Bell, S. S. Manizade, and J. G. Sonntag. 2014. Bathymetric control of tidewater glacier mass loss in northwest Greenland. Earth and Planetary Science Letters 40:40–46. doi:10.16/j.epsl.2014.05.058.
  • Pritchard, H. D., R. J. Arthern, D. G. Vaughan, and L. A. Edwards. 2009. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461 (7266):971–75. doi:10.1038/nature08471.
  • Raymond, C. 1996. Shear margins in glaciers and ice sheets. Journal of Glaciology 42 (140):90–102. doi:10.1017/S0022143000030550.
  • Reeh, N., C. Mayer, H. Miller, H. H. Thomsen, and A. Weidick. 1999. Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophysical Research Letters 26 (8):1039–42. doi:10.1029/1999GL900065.
  • Reeh, N., H. H. Thomsen, A. K. Higgins, and A. Weidick. 2001. Sea ice and the stability of north and northeast Greenland floating glaciers. Annals of Glaciology 33:474–80. doi:10.3189/172756401781818554.
  • Robel, A. A. 2017. Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving. Nature Communications 8 (1):1–7. doi:10.1038/ncomms14596.
  • Schoof, C. 2007. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. Journal of Geophysical Research 112 (F3):F03S28. doi:10.1029/2006JF000664.
  • Schoof, C., A. D. Davis, and T. V. Popa. 2017. Boundary layer models for calving marine outlet glaciers. The Cryosphere 11 (5):2283–303. doi:10.5194/tc-11-2283-2017.
  • Sohn, H. G., K. C. Jezek, and C. J. van der Veen. 1998. Jakobshavn Glacier, West Greenland: 30 years of spacebourne observations. Geophysical Research Letters 25 (14):2699–702. doi:10.1029/98GL01973.
  • Straneo, F., P. Heimbach, O. Sergienko, G. Hamilton, G. Catania, S. Griffies, R. Hallberg, A. Jenkins, I. Joughin, R. Motyka, et al. 2013. Challenges to understanding the dynamic response of Greenland’s Marine terminating glaciers to oceanic and atmospheric forcing. Bulletin of the American Meteorological Society 94 (8):1131–44. doi:10.1175/BAMS-D-12-00100.1.
  • Straneo, F., D. A. Sutherland, D. Holland, C. Gladish, G. S. Hamilton, H. L. Johnson, E. Rignot, Y. Xu, and M. Koppes. 2012. Characteristics of ocean waters reaching Greenland’s glaciers. Annals of Glaciology 53 (60):202–10. doi:10.3189/2012AoG60A059.
  • Todd, J., P. Christoffersen, T. Zwinger, P. Råback, and D. I. Benn. 2019. Sensitivity of a calving glacier to ice–ocean interactions under climate change: New insights from a 3-D full-Stokes model. The Cryosphere 13 (6):1681–94. doi:10.5194/tc-13-1681-2019.
  • van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna, and B. Wouters. 2009. Partitioning recent Greenland mass loss. Science 326 (5955):984–86. doi:10.1126/science.1178176.
  • van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters. 2016. On the recent contribution of the Greenland Ice Sheet to sea level change. The Cryosphere 10 (5):1933–46. doi:10.5194/tc-10-1933-2016.
  • van der Veen, C. J. 1996. Tidewater calving. Journal of Glaciology 42 (141):375–85. doi:10.1017/S0022143000004226.
  • van der Veen, C. J. 1998. Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Regions Science and Technology 27 (1):31–47. doi:10.1016/S0165-232X(97)00022-0.
  • Vieli, A., and F. M. Nick. 2011. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surveys in Geophysics 32 (4):437–58. doi:10.1007/s10712-011-9132-4.
  • Vijay, S., S. Khan, A. Kusk, A. Solgaard, T. Moon, and A. Bjørk. 2019. Resolving seasonal ice velocity of 45 Greenlandic glaciers with very high temporal details. Geophysical Research Letters 46 (3):1485–95. doi:10.1029/2018GL081503.
  • Warren, C. R. 1994. Freshwater calving and anomalous glacier oscillations: Recent behaviour of Moreno and Ameghino Glaciers, Patagonia. The Holocene 4 (4):422–29. doi:10.1177/095968369400400410.
  • Warren, C. R., and N. F. Glasser. 1992. Contrasting response of south Greenland glaciers to recent climatic change. Arctic and Alpine Research 24 (2):124–32. doi:10.2307/1551532.
  • Wilson, N., F. Straneo, and P. Heimbach. 2017. Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland’s largest remaining ice tongues. The Cryosphere 11 (6):2773–82. doi:10.5194/tc-11-2773-2017.