2,900
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Heat balance of a low-elevated Svalbard glacier during the ablation season: A case study of Aldegondabreen

ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2190057 | Received 28 Jul 2022, Accepted 07 Mar 2023, Published online: 05 Apr 2023

References

  • Aas, K. S., T. Dunse, E. Collier, T. V. Schuler, T. K. Berntsen, J. Kohler, and B. Luks. 2016. The climatic mass balance of Svalbard glaciers: A 10-year simulation with acoupled atmosphere–glacier mass balance model. The Cryosphere 10 (3):1089–13. doi:10.5194/tc-10-1089-2016.
  • Akperov, M., A. Rinke, I. I. Mokhov, V. A. Semenov, M. R. Parfenova, H. Matthes, M. Adakudlu, F. Boberg, J. H. Christensen, M. A. Dembitskaya, et al. 2019. Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change 182:103005. doi:10.1016/j.gloplacha.2019.103005.
  • Arnold, N. S., W. G. Rees, A. J. Hodson, and J. Kohler. 2006. Topographic controls on the surface energy balance of a high Arctic valley glacier. Journal of Geophysical Research 111 (F2). doi:10.1029/2005JF000426.
  • Böhner, J., and O. Antonić. 2009. Land surface parameters specific to topo-climatology. Development of Soil Sciences 33:195–226.
  • Borisik, A. L., A. L. Novikov, A. F. Glazovsky, I. I. Lavrentiev, and S. R. Verkulich. 2021. Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019. Led i Sneg 61:26–37.
  • Chernov, R. A., A. V. Kudikov, T. V. Vshivtseva, and N. I. Osokin. 2019. Estimation of the surface ablation and mass balance of Eustre Grønfjordbreen (Spitsbergen). Led i Sneg 59:59–66.
  • Hock, R. 2005. Glacier melt: A review of processes and their modelling. Progress in Physical Geography: Earth and Environment 29 (3):362–91. doi:10.1191/0309133305pp453ra.
  • Hock, R., and B. Holmgren. 1996. Some aspects of energy balance and ablation of Storglaciären, northern Sweden. Geografiska Annaler: Series A, Physical Geography 78 (2–3):121–31.
  • Holmlund, E. 2021. Aldegondabreen glacier change since 1910 from structure-from-motion photogrammetry of archived terrestrial and aerial photographs: Utility of a historic archive to obtain century-scale Svalbard glacier mass losses. Journal of Glaciology 67 (261):107–16. doi:10.1017/jog.2020.89.
  • Huss, M. 2013. Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7 (3):877–87. doi:10.5194/tc-7-877-2013.
  • Klok, E., and J. Oerlemans. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. Journal of Glaciology 48 (163):505–18. doi:10.3189/172756502781831133.
  • König-Langlo, G., and E. Augsteine. 1994. Parameterization of the downward long-wave radiation at the Earth’s surface in polar regions. Meteorologische Zeitschrift 6 (6):343–47. doi:10.1127/metz/3/1994/343.
  • Koyama, T., J. Stroeve, J. Cassano, and A. Crawford. 2017. Sea ice loss and Arctic cyclone activity from 1979 to 2014. Journal of Climate 30 (12):4735–54. doi:10.1175/JCLI-D-16-0542.1.
  • Lucht, W., A. H. Hyman, A. H. Strahler, M. J. Barnsley, P. Hobson, and J. Muller. 2000. A comparison of satellite-derived spectral albedos to ground-based broadband albedo measurements modeled to satellite spatial scale for a semidesert landscape. Remote Sensing of Environment 74 (1):85–98. doi:10.1016/S0034-4257(00)00125-5.
  • Łupikasza, E. B., D. Ignatiuk, M. Grabiec, K. Cielecka-Nowak, M. Laska, J. Jania, B. Luks, A. Uszczyk, and T. Budzik. 2019. The role of winter rain in the glacial system on Svalbard. Water 11 (2):334. doi:10.3390/w11020334.
  • Łupikasza, E. B., T. Niedźwiedź, R. Przybylak, and Ø. Nordli. 2021. Importance of regional indices of atmospheric circulation for periods of warming and cooling in Svalbard during 1920–2018. International Journal of Climatology 41 (6):3481–502. doi:10.1002/joc.7031.
  • Małecki, J. 2015. Glacio− meteorology of Ebbabreen, Dickson Land, central Svalbard, during 2008–2010 melt seasons. Polish Polar Research 36 (2):145–61. doi:10.1515/popore-2015-0010.
  • Möller, M., R. Finkelnburg, M. Braun, R. Hock, U. Jonsell, V. A. Pohjola, D. Scherer, and C. Schneider. 2011. Climatic mass balance of the ice cap Vestfonna, Svalbard: A spatially distributed assessment using ERA-Interim and MODIS data. Journal of Geophysical Research 116 (F3):F03009. doi:10.1029/2010JF001905.
  • Möller, M., and J. Kohler. 2018. Differing climatic mass balance evolution across Svalbard glacier regions over 1900–2010. Frontiers in Earth Science 6. doi:10.3389/feart.2018.00128.
  • Munro, D. S. 1990. Comparisons of melt energy computations and ablatometer measurements on melting ice and snow. Arctic and Alpine Research 22 (2):153–62. doi:10.2307/1551300.
  • Naegeli, K., A. Damm, M. Huss, H. Wulf, M. Schaepman, and M. Hoelzle. 2017. Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data. Remote Sensing 9 (2):110. doi:10.3390/rs9020110.
  • Noël, B., C. L. Jakobs, W. J. J. van Pelt, S. Lhermitte, B. Wouters, J. Kohler, J. O. Hagen, B. Luks, C. H. Reijmer, W. J. van de Berg, et al. 2020. Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications 11 (1):4597. doi:10.1038/s41467-020-18356-1.
  • Nuth, C., J. Kohler, M. Konig, A. von Deschwanden, J. O. Hagen, A. Kaab, G. Moholdt, and R. Pettersson. 2013. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere 7 (5):1603–21. doi:10.5194/tc-7-1603-2013.
  • Osokin, N. I., A. V. Sosnovsky, P. R. Nakalov, and R. A. Chernov. 2010. Assessment of ablation on the glaciers of the Svalbard archipelago at the beginning of the 21st century. Led i Sneg 3:13–18.
  • Østby, T. I., T. V. Schuler, J. O. Hagen, R. Hock, and L. H. Reijmer. 2013. Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08. Annals of Glaciology 54 (63):229–40. doi:10.3189/2013AoG63A280.
  • Porter, C., P. Morin, I. Howat, M.-Y. Noh, B. Bates, K. Peterman, S. Keesey, et al. 2018. ArcticDem, Version 3. https://doi.org/10.7910/DVN/OHHUKH.HarvardDataverse,V1.
  • Prokhorova, U. V., A. V. Terekhov, B. V. Ivanov, and S. R. Verkulich. 2021. Calculation of the heat balance components of the Aldegonda glacier (Western Spitsbergen) during the ablation period according to the observations of 2019. Kriosfera Zemli 25:50–60.
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore. 2017. Extreme cyclone events in the Arctic: Wintertime variability and trends. Environmental Research Letters 12 (9):Article 094006. doi:10.1088/1748-9326/aa7def.
  • Rohrer, M. B., and L. N. Braun. 1994. Long-term records of snow cover water equivalent in the Swiss Alps: 2. Simulation. Hydrology Research 25 (1–2):65–78. doi:10.2166/nh.1994.0020.
  • Schuler, T. V., J. Kohler, N. Elagina, J. O. M. Hagen, A. J. Hodson, J. A. Jania, A. M. Kääb, B. Luks, J. Małecki, G. Moholdt, et al. 2020. Reconciling Svalbard glacier mass balance. Frontiers in Earth Science 8:156. doi:10.3389/feart.2020.00156.
  • Shestakova, A. A., D. G. Chechin, C. Lüpkes, J. Hartmann, and M. Maturilli. 2022. The foehn effect during easterly flow over Svalbard. Atmospheric Chemistry and Physics 22 (2):1529–48. doi:10.5194/acp-22-1529-2022.
  • Strzelecki, M. C., A. J. Long, J. M. Lloyd, J. Małecki, P. Zagórski, Ł. Pawłowski, and M. W. Jaskólski. 2018. The role of rapid glacier retreat and landscape transformation in controlling the post-Little Ice Age evolution of paraglacial coasts in central Spitsbergen (Billefjorden, Svalbard). Land Degradation & Development 29 (6):1962–78. doi:10.1002/ldr.2923.
  • Sturm, M., J. Holmgren, M. König, and K. Morris. 1997. The thermal conductivity of seasonal snow. Journal of Glaciology 43 (143):26–41. doi:10.1017/S0022143000002781.
  • Svyashchennikov, P. N., U. V. Prokhorova, and B. V. Ivanov. 2020. Comparison of atmospheric circulation in the area of Spitsbergen in 1920–1950 and in the modern warming period. Russian Meteorology and Hydrology 45 (1):22–28. doi:10.3103/S1068373920010033.
  • Troitsky, L. S., E. M. Singer, V. S. Koryakin, V. A. Markin, and V. I. Mikhaliov. 1975. Glaciation of the Spitsbergen. Moscow, Russia: Nauka. 276.
  • Van Pelt, W. J. J., V. Pohjola, R. Pettersson, S. Marchenko, J. Kohler, B. Luks, J. O. Hagen, T. V. Schuler, T. Dunse, B. Noël, et al. 2019. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). The Cryosphere 13 (9):2259–80. doi:10.5194/tc-13-2259-2019.
  • Van Pelt, W. J., V. A. Pohjola, and C. H. Reijmer. 2016. The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier. Frontiers in Earth Science 4. doi:10.3389/feart.2016.00102.
  • Wheler, B. A., and G. E. Flowers. 2011. Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. Journal of Glaciology 57 (201):121–33. doi:10.3189/002214311795306709.
  • Wickström, S., M. O. Jonassen, T. Vihma, and P. Uotila. 2019. Trends in cyclones in the high latitude North Atlantic during 1979–2016. Quarterly Journal of the Royal Meteorological Society 146 (727):762–69. doi:10.1002/qj.3707.
  • Zou, X., M. Ding, W. Sun, D. Yang, W. Liu, B. Huai, S. Jin, and C. Xiao. 2021. The surface energy balance of Austre Lovénbreen, Svalbard, during the ablation period in 2014. Polar Research 40. doi:10.33265/polar.v40.5318.