2,684
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Integrating local environmental observations and remote sensing to better understand the life cycle of a thermokarst lake in Arctic Alaska

ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2195518 | Received 16 Nov 2022, Accepted 22 Mar 2023, Published online: 02 May 2023

References

  • Alessa, L., A. Kliskey, R. Lammers, C. Arp, D. White, L. Hinzman, and R. Busey. 2008. The Arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environmental Management 42, no. 3: 523–16. doi:10.1007/s00267-008-9152-0.
  • Arp, C. D., M. S. Whitman, B. M. Jones, D. A. Nigro, V. A. Alexeev, A. Gädeke, S. Fritz, et al. 2019. Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research 51, no. 1: 9–23. doi:10.1080/15230430.2018.1560839.
  • Bergstedt, H., B. M. Jones, K. Hinkel, L. Farquharson, B. V. Gaglioti, A. D. Parsekian, M. Kanevskiy, et al. 2021. Remote sensing-based statistical approach for defining drained lake basins in a continuous permafrost region, North Slope of Alaska. Remote Sensing 13, no. 13: 2539. doi:10.3390/rs13132539.
  • Berkes, F. 1990. Native subsistence fisheries: A synthesis of harvest studies in Canada. Arctic 43, no. 1: 35–42. doi:10.14430/arctic1588.
  • Bouchard, F., D. Fortier, M. Paquette, V. Boucher, R. Pienitz, and I. Laurion. 2020. Thermokarst lake inception and development in syngenetic ice-wedge polygon terrain during a cooling climatic trend, Bylot Island (Nunavut), eastern Canadian Arctic. The Cryosphere 14, no. 8: 2607–27. doi:10.5194/tc-14-2607-2020.
  • Brinkman, T. J., W. D. Hansen, F. S. Chapin, G. Kofinas, S. BurnSilver, and T. S. Rupp. 2016. Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Climatic Change 139, no. 3–4: 413–27. doi:10.1007/s10584-016-1819-6.
  • Brosius, L. S., K. M. W. Anthony, C. C. Treat, J. Lenz, M. C. Jones, M. S. Bret-Harte, and G. Grosse. 2021. Spatiotemporal patterns of northern lake formation since the Last Glacial Maximum. Quaternary Science Reviews 253:106773. doi:10.1016/j.quascirev.2020.106773.
  • Burn, C. 2020. The Illisarvik drained-lake field experiment: A legacy of J. Ross Mackay. In Curious about nature: A passion for fieldwork, ed. D. Thompson and T. Burt, 156–60. Cambridge: Cambridge University Press.
  • Crate, S. A. 2012. Climate change and ice dependent communities: Perspectives from Siberia and Labrador. The Polar Journal 2, no. 1: 61–75. doi:10.1080/2154896X.2012.679560.
  • DeMarban, A. 2011. In Arctic, climate-change threats include giardia, food poisoning [online]. http://www.thearcticsounder.com/article/1109in_arctic_climate-change_threats_include (accessed November 15, 2022).
  • ESRI. 2022. ArcGIS Desktop. Redlands, CA: Environmental Systems Research Institute.
  • Fairbanks Fodar. 2019. Digital mapping of coast between Cape Thompson and Cape Prince of Wales [online]. https://elevation.alaska.gov/ (accessed August 21, 2022).
  • Farquharson, L. M., D. H. Mann, G. Grosse, B. M. Jones, and V. E. Romanovsky. 2016. Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 273:116–33. doi:10.1016/j.geomorph.2016.08.007.
  • Fauchald, P., V. Hausner, J. Schmidt, and D. Clark. 2017. Transitions of social-ecological subsistence systems in the Arctic. International Journal of the Commons 11, no. 1: 275–329. doi:10.18352/ijc.698.
  • Fedorov, A. N., P. P. Gavriliev, P. Y. Konstantinov, T. Hiyama, Y. Iijima, and G. Iwahana. 2014. Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7, no. 2: 188–96. doi:10.1002/eco.1378.
  • Grosse, G., B. Jones, C. Arp. 2013. 8.21 Thermokarst lakes, drainage, and drained basins. In Treatise on geomorphology, and J. F. Shroder, 325–53. San Diego: Academic Press.
  • Himmelstoss, E. A., R. E. Henderson, M. G. Kratzmann, and A. S. Farris. 2021. Digital Shoreline Analysis System (DSAS) version 5.1 user guide. Open-File Report. U.S. Geological Survey, No. 2021–1091.
  • Hinkel, K. M., R. C. Frohn, F. E. Nelson, W. R. Eisner, and R. A. Beck. 2005. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafrost and Periglacial Processes 16, no. 4: 327–41. doi:10.1002/ppp.532.
  • Hinkel, K. M., B. M. Jones, W. R. Eisner, C. J. Cuomo, R. A. Beck, and R. Frohn. 2007. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. Journal of Geophysical Research: Earth Surface 112 (F2). doi:10.1029/2006JF000584.
  • Jones, B. M. 2023. Geospatial Data Documenting the Expansion and Drainage of Schaeffer Lake, Northwestern Arctic Alaska, 1951-2022. Arctic Data Center. doi:10.18739/A2930NW7W.
  • Jones, B. M., and C. D. Arp. 2015. Observing a catastrophic thermokarst lake drainage in Northern Alaska. Permafrost and Periglacial Processes 26, no. 2: 119–28. doi:10.1002/ppp.1842.
  • Jones, B. M., C. D. Arp, G. Grosse, I. Nitze, M. J. Lara, M. S. Whitman, L. M. Farquharson, et al. 2020. Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafrost and Periglacial Processes 31, no. 1: 110–27. doi:10.1002/ppp.2038.
  • Jones, B. M., G. Grosse, C. D. Arp, M. C. Jones, K. M. Walter Anthony, and V. E. Romanovsky. 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 116:G2. doi:10.1029/2011JG001666.
  • Jones, B. M., G. Grosse, L. M. Farquharson, P. Roy-Léveillée, A. Veremeeva, M. Z. Kanevskiy, B. V. Gaglioti, et al. 2022. Lake and drained lake basin systems in lowland permafrost regions. Nature Reviews Earth & Environment 3, no. 1: 85–98. doi:10.1038/s43017-021-00238-9.
  • Jones, M. C., G. Grosse, B. M. Jones, and K. Walter Anthony. 2012. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences 117, no. G2: G2. doi:10.1029/2011JG001766.
  • Jones, B. M., K. D. Tape, J. A. Clark, I. Nitze, G. Grosse, and J. Disbrow. 2020. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region. Baldwin Peninsula, Northwestern Alaska 15, no. 7: 75005.
  • Jorgenson, M. T., and Y. Shur. 2007. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. Journal of Geophysical Research: Earth Surface 112, no. F2: F2. doi:10.1029/2006JF000531.
  • Kanevskiy, M., T. Jorgenson, Y. Shur, J. A. O’Donnell, J. W. Harden, Q. Zhuang, and D. Fortier. 2014. Cryostratigraphy and permafrost evolution in the lacustrine lowlands of West-Central Alaska. Permafrost and Periglacial Processes 25, no. 1: 14–34. doi:10.1002/ppp.1800.
  • Lantz, T. C., Y. Zhang, and S. V. Kokelj. 2022. Impacts of ecological succession and climate warming on permafrost aggradation in drained lake basins of the Tuktoyaktuk Coastlands, Northwest Territories, Canada. Permafrost and Periglacial Processes 33, no. 2: 176–92. doi:10.1002/ppp.2143.
  • Lara, M. J., Y. Chen, and B. M. Jones. 2021. Recent warming reverses forty-year decline in catastrophic lake drainage and hastens gradual lake drainage across northern Alaska. Environmental Research Letters 16, no. 12: 124019. doi:10.1088/1748-9326/ac3602.
  • Mackay, J. R. 1988. Catastrophic lake drainage, Tuktoyaktuk peninsula area, District of Mackenzie. Current Research, Part D, Geological Survey of Canada, Paper 88:83–90.
  • Mackay, J. R. 1997. A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: A discussion of the method and some results. Canadian Journal of Earth Sciences 34, no. 1: 17–33. doi:10.1139/e17-002.
  • Martin, D., D. Bélanger, P. Gosselin, J. Brazeau, C. Furgal, and S. Déry. 2007. Drinking water and potential threats to human health in Nunavik: Adaptation strategies under climate change conditions. Arctic 60, no. 2: 195–202.
  • Medeiros, A. S., P. Wood, S. D. Wesche, M. Bakaic, and J. F. Peters. 2017. Water security for northern peoples: Review of threats to Arctic freshwater systems in Nunavut, Canada. Regional Environmental Change 17, no. 3: 635–47. doi:10.1007/s10113-016-1084-2.
  • Nitzbon, J., M. Langer, L. C. P. Martin, S. Westermann, T. Schneider von Deimling, and J. Boike. 2021. Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate. The Cryosphere 15, no. 3: 1399–422. doi:10.5194/tc-15-1399-2021.
  • Nitze, I., S. W. Cooley, C. R. Duguay, B. M. Jones, and G. Grosse. 2020. The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: Fast-forward into the future. The Cryosphere 14, no. 12: 4279–97. doi:10.5194/tc-14-4279-2020.
  • Nitze, I., G. Grosse, B. M. Jones, V. E. Romanovsky, and J. Boike. 2018. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nature Communications 9, no. 1: 5423. doi:10.1038/s41467-018-07663-3.
  • Nolan, M., C. Larsen, and M. Sturm. 2015. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry. The Cryosphere 9, no. 4: 1445–63.
  • PIX4D. 2022. Pix4dmapper: Release 4.7.5. Prilly, Switzerland: PIX4D S.A.
  • QTM. 2022. Quick Terrain Modeler: Release 8.3.1. Baltimore, MD: Applied Imagery, John Hopkins University Applied Physics Laboratory.
  • Rozell, N. 2022. If a lake drains in northern Alaska … [online]. https://uaf.edu/news/if-a-lake-drains-in-northern-alaska.php (accessed October 12, 2022).
  • Rozhkova-Timina, I. O., V. K. Popkov, P. J. Mitchell, and S. N. Kirpotin. 2018. Beavers as ecosystem engineers – A review of their positive and negative effects. IOP Conference Series: Earth and Environmental Science. 201:012015.
  • Swanson, D. K. 2019. Thermokarst and precipitation drive changes in the area of lakes and ponds in the National Parks of northwestern Alaska, 1984–2018. Arctic, Antarctic, and Alpine Research 51, no. 1: 265–79. doi:10.1080/15230430.2019.1629222.
  • Tape, K. D., K. Christie, G. Carroll, and J. A. O’Donnell. 2016. Novel wildlife in the Arctic: The influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Global Change Biology 22, no. 1: 208–19. doi:10.1111/gcb.13058.
  • Tape, K. D., J. A. Clark, B. M. Jones, S. Kantner, B. V. Gaglioti, G. Grosse, and I. Nitze. 2022. Expanding beaver engineering creates widespread disturbances in the Arctic. Scientific reports.
  • Tape, K. D., D. D. Gustine, R. W. Ruess, L. G. Adams, and J. A. Clark. 2016. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PloS one 11, no. 4: e0152636. doi:10.1371/journal.pone.0152636.
  • Tape, K. D., B. M. Jones, C. D. Arp, I. Nitze, and G. Grosse. 2018. Tundra be dammed: Beaver colonization of the Arctic. Global Change Biology 24, no. 10: 4478–88. doi:10.1111/gcb.14332.
  • Tessier, S., B. Forbes, G. Grosse, B. M. Jones, I. Nitze, and J. Schaeffer. 2022. Sudden lake draining event - Local Environmental Observer (LEO) Network [online]. https://www.leonetwork.org/en/posts/preview/DC4753BF-6270-46EE-816B-6B97C36B30D3 (accessed August 24, 2022).
  • Turetsky, M. R., B. W. Abbott, M. C. Jones, K. W. Anthony, D. Olefeldt, E. A. G. Schuur, G. Grosse, et al. 2020. Carbon release through abrupt permafrost thaw. Nature Geoscience 13, no. 2: 138–43. doi:10.1038/s41561-019-0526-0.
  • Turner, K. W., B. B. Wolfe, and I. McDonald. 2022. Monitoring 13 years of drastic catchment change and the hydroecological responses of a drained thermokarst lake. Arctic Science 8, no. 4: 1094–115.
  • Ulrich, M., H. Matthes, L. Schirrmeister, J. Schütze, H. Park, Y. Iijima, and A. N. Fedorov. 2017. Differences in behavior and distribution of permafrost-related lakes in Central Yakutia and their response to climatic drivers. Water Resources Research 53, no. 2: 1167–88. doi:10.1002/2016WR019267.
  • Webb, E. E., A. K. Liljedahl, J. A. Cordeiro, M. M. Loranty, C. Witharana, and J. W. Lichstein. 2022. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nature Climate Change 12, no. 9: 841–6. doi:10.1038/s41558-022-01455-w.
  • White, D. M., S. C. Gerlach, P. Loring, A. C. Tidwell, and M. C. Chambers. 2007 Food and water security in achanging Arctic climate. Environmental Research Letters. 2, no. 4: 045018.
  • Wolfe, S., J. Murton, M. Bateman, and J. Barlow. 2020. Oriented-lake development in the context of late Quaternary landscape evolution, McKinley Bay Coastal Plain, western Arctic Canada. Quaternary Science Reviews 242:106414. doi:10.1016/j.quascirev.2020.106414.
  • Wolfe, R. J., and R. J. Walker. 1987. Subsistence economies in Alaska: Productivity, geography, and development impacts. Arctic Anthropology 24, no. 2: 56–81.
  • Wrona, F. J., M. Johansson, J. M. Culp, A. Jenkins, J. Mård, I. H. Myers-Smith, T. D. Prowse, W. F. Vincent, and P. A. Wookey. 2016. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. Journal of Geophysical Research: Biogeosciences 121, no. 3: 650–74.
  • Zurowski, W. 1992. Building activity of beavers. Acta Theriologica 37, no. 4: 403–11. doi:10.4098/AT.arch.92-41.