1,682
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Will current protected areas harbor refugia for threatened Arctic vegetation types until 2050? A first assessment

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2203478 | Received 25 Jul 2022, Accepted 12 Apr 2023, Published online: 11 May 2023

References

  • Alley, R. B., J. T. Andrews, J. Brigham-Grette, G. K. C. Clarke, K. M. Cuffey, J. J. Fitzpatrick, S. Funder, et al. 2010. History of the Greenland Ice Sheet: Paleoclimatic insights. Quaternary Science Reviews doi:10.1016/j.quascirev.2010.02.007.
  • Barrows, C. W., A. R. Ramirez, L. C. Sweet, T. L. Morelli, C. I. Millar, N. Frakes, J. Rodgers, and M. F. Mahalovich. 2020. Validating climate-change refugia: Empirical bottom-up approaches to support management actions. Frontiers in Ecology and the Environment 18 (5): 298–16. doi:10.1002/fee.2205.
  • Bjorkman, A. D., M. García Criado, I. H. Myers-Smith, V. Ravolainen, I. S. Jónsdóttir, K. B. Westergaard, J. P. Lawler, et al. 2020. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49, no. 3: 678–92. doi:10.1007/s13280-019-01161-6.
  • Bland, L. M., D. A. Keith, R. M. Miller, N. J. Murray, and J. P. Rodriguez. 2015. Guidelines for the application of IUCN Red List of ecosystems categories and criteria. In Guidelines for the application of IUCN Red List of ecosystems categories and criteria, 44–50. Gland, Switzerland: IUCN. doi:10.2305/iucn.ch.2016.rle.1.en.
  • Blok, D., M. M. P. D. Heijmans, G. Schaepman-Strub, A. V. Kononov, T. C. Maximov, and F. Berendse. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology 16, no. 4: 1296–305. doi:10.1111/j.1365-2486.2009.02110.x.
  • Boelman, N. T., L. Gough, J. Wingfield, S. Goetz, A. Asmus, H. E. Chmura, J. S. Krause, J. H. Perez, S. K. Sweet, and K. C. Guay. 2015. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan Arctic tundra. Global Change Biology 21, no. 4: 1508–20. doi:10.1111/gcb.12761.
  • Bonfils, C. J. W., T. J. Phillips, D. M. Lawrence, P. Cameron-Smith, W. J. Riley, and Z. M. Subin. 2012. On the influence of shrub height and expansion on northern high latitude climate. Environmental Research Letters 7, no. 1: 015503. doi:10.1088/1748-9326/7/1/015503.
  • Chapin, F. S., M. Sommerkorn, M. D. Robards, and K. Hillmer-Pegram. 2015. Ecosystem stewardship: A resilience framework for Arctic conservation. Global Environmental Change 34: 207–17. doi:10.1016/j.gloenvcha.2015.07.003.
  • Chapin, F. S., and A. M. Starfield. 1997. Time lags and novel ecosystems in response to transient climatic change in Arctic Alaska. Climatic Change 35, no. 4: 449–61. doi:10.1023/A:1005337705025.
  • Chylek, P., C. Folland, J. D. Klett, M. Wang, N. Hengartner, G. Lesins, and M. K. Dubey. 2022. Annual mean Arctic amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophysical Research Letters 49, no. 13. doi:10.1029/2022GL099371.
  • Circumpolar Flora Group. 2022. CAFF - About the Circumpolar Flora Group (CFG). https://www.caff.is/flora-cfg/about-cfg
  • Conservation of Arctic Flora and Fauna. 2013. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Conservation of Arctic flora and fauna. Arctic Biodiversity Assessment.
  • Conservation of Arctic Flora and Fauna and Protection of the Arctic Marine Environment. 2017. Arctic protected areas: Indicator report, 2017: Conservation of Arctic flora and fauna and protection of the Arctic marine environment.
  • Cornelissen, J. H. C., T. V. Callaghan, J. M. Alatalo, A. Michelsen, E. Graglia, A. E. Hartley, D. S. Hik, et al. 2001. Global change and Arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? Journal of Ecology 89, no. 6: 984–94. doi:10.1046/j.1365-2745.2001.00625.x.
  • Dudley, N. 2008. Guidelines for applying protected area management categories. In Guidelines for applying protected area management categories, ed. N. Dudley, 43–48. Gland, Switzerland: IUCN. doi:10.2305/iucn.ch.2008.paps.2.en.
  • Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, N. Boulanger-Lapointe, E. J. Cooper, J. H. C. Cornelissen, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2, no. 6: 453–7. doi:10.1038/nclimate1465.
  • ESRI. 2017. ArcMap 10.5.1 [GIS Software] (10.5.1). Environmental Systems Research Institute, Inc.
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9, no. 5: 1937–58. doi:10.5194/gmd-9-1937-2016.
  • Farquharson, L. M., V. E. Romanovsky, W. L. Cable, D. A. Walker, S. V. Kokelj, and D. Nicolsky. 2019. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic. Geophysical Research Letters 46, no. 12: 6681–9. doi:10.1029/2019GL082187.
  • Fauchald, P., T. Park, H. Tømmervik, R. Myneni, and V. H. Hausner. 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances 3, no. 4. doi:10.1126/sciadv.1601365.
  • Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, no. 12: 4302–15. doi:10.1002/JOC.5086.
  • Forbes, B. C., J. J. Ebersole, and B. Strandberg. 2001. Anthropogenic disturbance and patch dynamics in circumpolar Arctic ecosystems. Conservation Biology 15, no. 4: 954–69. doi:10.1046/j.1523-1739.2001.015004954.x.
  • Gray, C. L., S. L. L. Hill, T. Newbold, L. N. Hudson, L. Boïrger, S. Contu, A. J. Hoskins, S. Ferrier, A. Purvis, and J. P. W. Scharlemann. 2016. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications 7, no. 1: 1–7. doi:10.1038/ncomms12306.
  • Hannah, L., G. F. Midgley, and D. Millar. 2002. Climate change-integrated conservation strategies. Global Ecology and Biogeography 11, no. 6: 485–95. doi:10.1046/j.1466-822X.2002.00306.x.
  • Hansen, K. K., M. A. Sundset, L. P. Folkow, M. Nilsen, and S. D. Mathiesen. 2018. Methane emissions are lower from reindeer fed lichens compared to a concentrate feed. Polar Research 37, no. 1: 1505396. doi:10.1080/17518369.2018.1505396.
  • Heller, N. E., and E. S. Zavaleta. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142, no. 1: 14–32. doi:10.1016/j.biocon.2008.10.006.
  • Hinzman, L. D., N. D. Bettez, W. R. Bolton, F. S. Chapin, M. B. Dyurgerov, C. L. Fastie, B. Griffith, et al. 2005. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Climatic Change 72, no. 3: 251–98. doi:10.1007/s10584-005-5352-2.
  • Hjort, J., O. Karjalainen, J. Aalto, S. Westermann, V. E. Romanovsky, F. E. Nelson, B. Etzelmüller, and M. Luoto. 2018. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications 9, no. 1. doi:10.1038/s41467-018-07557-4.
  • Hodkinson, I. D., S. J. Coulson, and N. R. Webb. 2003. Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard. Journal of Ecology 91, no. 4: 651–63. doi:10.1046/j.1365-2745.2003.00786.x.
  • Intergovernmental Panel on Climate Change. 2000. IPCC Special Report on Emissions Scenarios (SRES) of working group III. https://citeulike-article-id:9904924
  • International Council on Mining & Metals. 2010. Mining and biodiversity: A collection of case studies–2010 edition. https://bobbloomfield.files.wordpress.com/2013/03/2010icmm-biodiversity-case-studies.pdf
  • Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, no. S4: 194–220. doi:10.1017/s0094837300026932.
  • Joly, K., R. R. Jandt, and D. R. Klein. 2009. Decrease of lichens in Arctic ecosystems: The role of wildfire, caribou, reindeer, competition and climate in north-western Alaska. Polar Research 28, no. 3: 433–42. doi:10.1111/j.1751-8369.2009.00113.x.
  • Juszak, I., A. M. Erb, T. C. Maximov, and G. Schaepman-Strub. 2014. Arctic shrub effects on NDVI, summer albedo and soil shading. Remote Sensing of Environment 153: 79–89. doi:10.1016/j.rse.2014.07.021.
  • Kennedy, C. M., J. R. Oakleaf, D. M. Theobald, S. Baruch-Mordo, and J. Kiesecker. 2019. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, no. 3: 811–26. doi:10.1111/gcb.14549.
  • Kruse, S., and U. Herzschuh. 2022. Regional opportunities for tundra conservation in the next 1000 years. ELife 11. doi:10.7554/elife.75163.
  • Ksenofontov, S., N. Backhaus, and G. Schaepman-Strub. 2019. ‘There are new species’: Indigenous knowledge of biodiversity change in Arctic Yakutia. Polar Geography 42, no. 1: 34–57. doi:10.1080/1088937X.2018.1547326.
  • Kumpula, T., A. Pajunen, E. Kaarlejärvi, B. C. Forbes, and F. Stammler. 2011. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Global Environmental Change 21, no. 2: 550–62. doi:10.1016/j.gloenvcha.2010.12.010.
  • La Sorte, F. A., and W. Jetz. 2012. Tracking of climatic niche boundaries under recent climate change. Journal of Animal Ecology 81, no. 4: 914–25. doi:10.1111/j.1365-2656.2012.01958.x.
  • Lemieux, C. J., and D. J. Scott. 2005. Climate change, biodiversity conservation and protected area planning in Canada. Canadian Geographer 49, no. 4: 384–97. doi:10.1111/j.0008-3658.2005.00103.x.
  • Lescop-Sinclair, K., and S. Payette. 1995. Recent advance of the Arctic treeline along the Eastern Coast of Hudson Bay. The Journal of Ecology 83, no. 6: 929. doi:10.2307/2261175.
  • Lloyd, A. H., T. S. Rupp, C. L. Fastie, and A. M. Starfield. 2002. Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. Journal of Geophysical Research D: Atmospheres 108, no. D2. doi:10.1029/2001jd000852.
  • Loranty, M. M., and S. J. Goetz. 2012. Shrub expansion and climate feedbacks in Arctic tundra. Environmental Research Letters 7, no. 1: 011005. doi:10.1088/1748-9326/7/1/011005.
  • Loranty, M. M., S. J. Goetz, and P. S. A. Beck. 2011. Tundra vegetation effects on pan-Arctic albedo. Environmental Research Letters 6, no. 2: 024014. doi:10.1088/1748-9326/6/2/029601.
  • Lunt, D. J., N. de Noblet-Ducoudré, and S. Charbit. 2004. Effects of a melted Greenland ice sheet on climate, vegetation, and the cryosphere. Climate Dynamics 23, no. 7–8: 679–94. doi:10.1007/s00382-004-0463-4.
  • Masrur, A., A. Taylor, L. Harris, J. Barnes, and A. Petrov. 2022. Topography, climate and fire history regulate wildfire activity in the Alaskan Tundra. Journal of Geophysical Research: Biogeosciences 127, no. 3: e2021JG006608. doi:10.1029/2021JG006608.
  • Morelli, T. L., C. W. Barrows, A. R. Ramirez, J. M. Cartwright, D. D. Ackerly, T. D. Eaves, J. L. Ebersole, et al. 2020. Climate-change refugia: Biodiversity in the slow lane. Frontiers in Ecology and the Environment 18, no. 5: 228–34. doi:10.1002/fee.2189.
  • Morelli, T. L., C. Daly, S. Z. Dobrowski, D. M. Dulen, J. L. Ebersole, S. T. Jackson, J. D. Lundquist, et al. 2016. Managing climate change refugia for climate adaptation. PLoS ONE 11, no. 8: 1–17. doi:10.1371/journal.pone.0159909.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6, no. 4: 045509. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., J. T. Kerby, G. K. Phoenix, J. W. Bjerke, H. E. Epstein, J. J. Assmann, C. John, et al. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10, no. 2: 106–17. doi:10.1038/s41558-019-0688-1.
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, no. 6626: 698–702. doi:10.1038/386698a0.
  • Noss, R. F. 2001. Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology 15, no. 3: 578–90. doi:10.1046/j.1523-1739.2001.015003578.x.
  • Notz, D., and S. Community. 2020. Arctic sea ice in CMIP6. Geophysical Research Letters 47, no. 10: e2019GL086749. doi:10.1029/2019GL086749.
  • Nuttall, M., F. Berkes, B. Forbes, G. Kofinas, T. Vlassova, and G. W. Wenzel. 2005. Hunting, herding, fishing, and gathering: Indigenous peoples and renewable resource use in the Arctic. In Arctic Climate Impact Assessment, 649–690. Cambridge: Oxford University Press. https://www.caff.is/assessment-series/37-arctic-climate-impact-assessment-acia-scientific-report
  • Oehri, J., G. Schaepman-Strub, J. S. Kim, R. Grysko, H. Kropp, I. Grünberg, V. Zemlianskii, et al. 2022. Vegetation type is an important predictor of the Arctic summer land surface energy budget. Nature Communications 13, no. 1: 21–7. doi:10.1038/s41467-022-34049-3.
  • Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz. 2013a. Predicted Arctic vegetation distribution shifts under future climate change. Arctic Data Center, University of California, Santa Barbara. doi:10.18739/A2V935.
  • Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz. 2013b. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3, no. 7: 673–7. doi:10.1038/nclimate1858.
  • Phoenix, G. K., and J. W. Bjerke. 2016. Arctic browning: Extreme events and trends reversing Arctic greening. Global Change Biology 22, no. 9: 2960–2. doi:10.1111/gcb.13261.
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3, no. 1: 1–10. doi:10.1038/s43247-022-00498-3.
  • Raynolds, M. K., J. C. Jorgenson, M. T. Jorgenson, M. Kanevskiy, A. K. Liljedahl, M. Nolan, M. Sturm, and D. A. Walker. 2020. Landscape impacts of 3D‐seismic surveys in the Arctic National Wildlife Refuge, Alaska. Ecological Applications 1–20. doi:10.1002/eap.2143.
  • Raynolds, M. K., and D. A. Walker. 2009. Effects of deglaciation on circumpolar distribution of Arctic vegetation. Canadian Journal of Remote Sensing 35, no. 2: 118–29. doi:10.5589/m09-006.
  • Raynolds, M. K., D. A. Walker, K. J. Ambrosius, J. Brown, K. R. Everett, M. Kanevskiy, G. P. Kofinas, V. E. Romanovsky, Y. Shur, and P. J. Webber. 2014. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology 20, no. 4: 1211–24. doi:10.1111/gcb.12500.
  • Raynolds, M. K., D. A. Walker, A. Balser, C. Bay, M. Campbell, M. M. Cherosov, F. J. A. Daniëls, et al. 2019. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sensing of Environment 232: 111297. doi:10.1016/j.rse.2019.111297.
  • R Development Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org
  • Riordan, B., D. Verbyla, and A. D. McGuire. 2006. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images. Journal of Geophysical Research: Biogeosciences 111, no. G4. doi:10.1029/2005JG000150.
  • Rundqvist, S., H. Hedenås, A. Sandström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T. V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40, no. 6: 683–92. doi:10.1007/s13280-011-0174-0.
  • SAExploration. 2018. Marsh Creek 3D plan of operations winter seismic survey. https://eplanning.blm.gov/public_projects/nepa/111085/153349/187888/Marsh_Creek_Plan_of_Operations_Submitted_May2018.pdf
  • Scibilia, E., D. A. Walker, G. Kofinas, M. Raynolds, M. Kanevskiy, Y. Shur, K. Ambrosius, et al. 2015. Rapid Arctic Transitions due to Infrastructure and Climate (RATIC): A contribution to ICARP III. doi:10.13140/RG.2.1.4089.0006.
  • Serreze, M. C., J. E. Walsh, F. S. Chapin, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46, no. 1/2: 159–207. doi:10.1023/A:1005504031923.
  • Smith, L. C. 2005. Disappearing Arctic Lakes. Science 308, no. 5727: 1429–1429. doi:10.1126/science.1108142.
  • Stewart, L., I. G. Alsos, C. Bay, A. L. Breen, C. Brochmann, N. Boulanger-Lapointe, O. Broennimann, et al. 2016. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography 25, no. 4: 430–42. doi:10.1111/geb.12424.
  • Stralberg, D., C. Carroll, and S. E. Nielsen. 2020. Toward a climate-informed North American protected areas network: Incorporating climate-change refugia and corridors in conservation planning. Conservation Letters 13, no. 4. doi:10.1111/conl.12712.
  • Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411, no. 6837: 546–7. doi:10.1038/35079180.
  • Sulman, B. N., V. G. Salmon, C. M. Iversen, A. L. Breen, F. Yuan, and P. E. Thornton. 2021. Integrating arctic plant functional types in a land surface model using above- and belowground field observations. Journal of Advances in Modeling Earth Systems 13, no. 4: e2020MS002396. doi:10.1029/2020MS002396.
  • Swann, A. L., I. Y. Fung, S. Levis, G. B. Bonan, and S. C. Doney. 2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Sciences of the United States of America 107, no. 4: 1295–300. doi:10.1073/pnas.0913846107.
  • Taberlet, P., and R. Cheddadi. 2002. Ecology: Quaternary refugia and persistence of biodiversity. Science 297, no. 5589: 2009–10. doi:10.1126/science.297.5589.2009.
  • Thorne, J. H., M. Gogol-Prokurat, S. Hill, D. Walsh, R. M. Boynton, and H. Choe. 2020. Vegetation refugia can inform climate-adaptive land management under global warming. Frontiers in Ecology and the Environment 18, no. 5: 281–7. doi:10.1002/fee.2208.
  • Tzedakis, P. C., I. T. Lawson, M. R. Frogley, G. M. Hewitt, and R. C. Preece. 2002. Buffered tree population changes in a Quaternary refugium: Evolutionary implications. Science 297, no. 5589: 2044–7. doi:10.1126/science.1073083.
  • Venter, O., E. W. Sanderson, A. Magrach, J. R. Allan, J. Beher, K. R. Jones, H. P. Possingham, et al. 2016. Global terrestrial human footprint maps for 1993 and 2009. Scientific Data 3, no. 1. doi:10.1038/sdata.2016.67.
  • Virkkala, A. M., S. M. Natali, B. M. Rogers, J. D. Watts, K. Savage, S. J. Connon, M. Mauritz, et al. 2022. The ABCflux database: Arctic-boreal CO2flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data 14, no. 1: 179–208. doi:10.5194/essd-14-179-2022.
  • Walker, D. A., M. K. Raynolds, F. J. A. Daniëls, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, et al. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16, no. 3: 267–82. doi:10.1111/j.1654-1103.2005.tb02365.x.
  • Walker, M. D., C. H. Wahren, R. D. Hollister, G. H. R. Henry, L. E. Ahlquist, J. M. Alatalo, M. S. Bret-Harte, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103, no. 5: 1342–6. doi:10.1073/pnas.0503198103.
  • Walvoord, M. A., and B. L. Kurylyk. 2016. Hydrologic impacts of thawing permafrost-A review. Vadose Zone Journal 15, no. 6: vzj2016.01.0010. doi:10.2136/vzj2016.01.0010.
  • Wheeler, H. C., T. T. Høye, and J. C. Svenning. 2018. Wildlife species benefitting from a greener Arctic are most sensitive to shrub cover at leading range edges. Global Change Biology 24, no. 1: 212–23. doi:10.1111/gcb.13837.
  • White, D. M., S. Craig Gerlach, P. Loring, A. C. Tidwell, and M. C. Chambers. 2007. Food and water security in a changing Arctic climate. Environmental Research Letters 2, no. 4: 045018. doi:10.1088/1748-9326/2/4/045018.
  • Wookey, P. A., R. Aerts, R. D. Bardgett, F. Baptist, K. Bråthen, J. H. C. Cornelissen, L. Gough, et al. 2009. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology 15, no. 5: 1153–72. doi:10.1111/j.1365-2486.2008.01801.x.
  • Woo, M. K., and K. L. Young. 2006. High Arctic wetlands: Their occurrence, hydrological characteristics and sustainability. Journal of Hydrology 320, no. 3–4: 432–50. doi:10.1016/j.jhydrol.2005.07.025.
  • Yoshikawa, K., and L. D. Hinzman. 2003. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost and Periglacial Processes 14, no. 2: 151–60. doi:10.1002/ppp.451.
  • Yu, L., G. Leng, and A. Python. 2022. Attribution of the spatial heterogeneity of Arctic surface albedo feedback to the dynamics of vegetation, snow and soil properties and their interactions. Environmental Research Letters 17, no. 1: 014036. doi:10.1088/1748-9326/ac4631.
  • Zona, D., P. M. Lafleur, K. Hufkens, B. Bailey, B. Gioli, G. Burba, J. P. Goodrich, et al. 2022. Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Scientific Reports 12, no. 1: 1–10. doi:10.1038/s41598-022-07561-1.