1,393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Drivers of soil temperature variation in alpine lichen heaths and shrub vegetation during the summer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2209397 | Received 25 Sep 2022, Accepted 28 Apr 2023, Published online: 25 May 2023

References

  • Aalto, J., P. C. le Roux, and M. Luoto. 2013. Vegetation mediates soil temperature and moisture in Arctic-alpine environments. Arctic, Antarctic, and Alpine Research 45, no. 4: 429–13. doi:10.1657/1938-4246-45.4.429.
  • Aalto, J., D. Scherrer, J. Lenoir, A. Guisan, and M. Luoto. 2018. Biogeophysical controls on soil-atmosphere thermal differences: Implications on warming Arctic ecosystems. Environmental Research Letters 13, no. 7: 074003. doi:10.1088/1748-9326/aac83e.
  • Aartsma, P., J. Asplund, A. Odland, S. Reinhardt, and H. Renssen. 2020. Surface albedo of alpine lichen heaths and shrub vegetation. Arctic, Antarctic, and Alpine Research 52, no. 1: 312–22. doi:10.1080/15230430.2020.1778890.
  • Aartsma, P., J. Asplund, A. Odland, S. Reinhardt, and H. Renssen. 2021. Microclimatic comparison of lichen heaths and shrubs: Shrubification generates atmospheric heating but subsurface cooling during the growing season. Biogeosciences 18, no. 5: 1577–99. doi:10.5194/bg-18-1577-2021.
  • Aguirre, D., A. E. Benhumea, and J. R. McLaren. 2021. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology & Biochemistry 153: 108121. doi:10.1016/j.soilbio.2020.108121.
  • Barrere, M., F. Domine, B. Decharme, S. Morin, V. Vionnet, and M. Lafaysse. 2017. Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site. Geoscientific Model Development 10, no. 9: 3461–79. doi:10.5194/gmd-10-3461-2017.
  • Barry, R. G. 2008. Mountain weather and climate. 3rd ed. Cambridge: Cambridge University Press.
  • Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, no. 1: 48. doi:10.18637/jss.v067.i01.
  • Beer, C., P. Porada, A. Ekici, and M. Brakebusch. 2018. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions. Cryosphere 12, no. 2: 741–57. doi:10.5194/tc-12-741-2018.
  • Beringer, J., A. H. Lynch, F. S. Chapin, M. Mack, and G. B. Bonan. 2001. The representation of Arctic soils in the land surface model: The importance of mosses. Journal of Climate 14, no. 15: 3324–35. doi:10.1175/1520-0442(2001)014</>TROASI>2.0.CO;2.
  • Berner, L. T., R. Massey, P. Jantz, B. C. Forbes, M. Macias-Fauria, I. Myers-Smith, T. Kumpula, et al. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, no. 1: 1–12. doi:10.1038/s41467-020-18479-5.
  • Bjerke, J. W. 2011. Winter climate change: Ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environmental and Experimental Botany 72, no. 3: 404–8. doi:10.1016/j.envexpbot.2010.05.014.
  • Blok, D., M. M. P. D. Heijmans, G. Schaepman-Strub, A. V. Kononov, T. C. Maximov, and F. Berendse. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology 16, no. 4: 1296–305. doi:10.1111/j.1365-2486.2009.02110.x.
  • Bonfils, C. J. W., T. J. Phillips, D. M. Lawrence, P. Cameron-Smith, W. J. Riley, and Z. M. Subin. 2012. On the influence of shrub height and expansion on northern high latitude climate. Environmental Research Letters 7, no. 1: 015503. doi:10.1088/1748-9326/7/1/015503.
  • Chagnon, C., and S. Boudreau. 2019. Shrub canopy induces a decline in lichen abundance and diversity in Nunavik (Québec, Canada). Arctic, Antarctic, and Alpine Research 51, no. 1: 521–32. doi:10.1080/15230430.2019.1688751.
  • Chapin, F. S., M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key, A. H. Lloyd, A. D. McGuire, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310, no. 5748: 657–60. doi:10.1126/science.1117368.
  • Cornelissen, J. H. C., T. V. Callaghan, J. M. Alatalo, A. Michelsen, E. Graglia, A. E. Hartley, D. S. Hik, et al. 2001. Global change and Arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? Journal of Ecology 89, no. 6: 984–94. doi:10.1111/j.1365-2745.2001.00625.x.
  • Dahl, E. 1956. Rondane. Mountain vegetation in South Norway and its relation to the environment. Skrifter utgittav det Norske Videnskaps-Akademi i Oslo, Mathematisk-Naturvidenskapelig Klasse. 3: 1–374.
  • Ford, K. R., A. K. Ettinger, J. D. Lundquist, M. S. Raleigh, and J. H. R. Lambers. 2013. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape. PLoS ONE 8, no. 6: e65008. doi:10.1371/journal.pone.0065008.
  • Fraser, R. H., T. C. Lantz, I. Olthof, S. V. Kokelj, and R. A. Sims. 2014. Warming-induced shrub expansion and lichen decline in the Western Canadian Arctic. Ecosystems 17, no. 7: 1151–68. doi:10.1007/s10021-014-9783-3.
  • Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina. 2018. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, no. 3: 507–20. doi:10.1007/s10021-017-0165-5.
  • Gaffney, P. P. J., M. H. Hancock, M. A. Taggart, and R. Andersen. 2020. Restoration of afforested peatland: Immediate effects on aquatic carbon loss. Science of the Total Environment 742: 140594. doi:10.1016/j.scitotenv.2020.140594.
  • Gavazov, K. S. 2010. Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil 337, no. 1–2: 19–32. doi:10.1007/s11104-010-0477-0.
  • Gold, W. G., K. A. Glew, and L. G. Dickson. 2001. Functional influences of cryptobiotic surface crusts in an alpine tundra basin of the Olympic Mountains, Washington, USA. Northwest Science 75, no. 3: 315–26.
  • Graham, E. A., P. W. Rundel, W. Kaiser, Y. Lam, M. Stealey, and E. M. Yuen. 2012. Fine-scale patterns of soil and plant surface temperatures in an alpine fellfield habitat, White Mountains, California. Arctic, Antarctic, and Alpine Research 44, no. 3: 288–95. doi:10.1657/1938-4246-44.3.288.
  • Grünberg, I., E. J. Wilcox, S. Zwieback, P. Marsh, and J. Boike. 2020. Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences 17, no. 16: 4261–79. doi:10.5194/bg-17-4261-2020.
  • Hanssen-Bauer, I., H. Drange, E. J. Førland, L. A. Roald, K. Y. Børsheim, H. Hisdal, D. Lawrence, et al. 2017. Climate in Norway 2100 - a knowledge base for climate adaptation. Oslo: NCCS.
  • Heijmans, M. M., R. Í. Magnússon, M. J. Lara, G. V. Frost, I. H. Myers-Smith, J. van Huissteden, M. T. Jorgenson, et al. 2022. Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment 3, no. 1: 68–84. doi:10.1038/s43017-021-00233-0.
  • Hobbie, S. E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66, no. 4: 503–22. doi:10.2307/2963492.
  • Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50, no. 3: 346–63. doi:10.1002/bimj.200810425.
  • Hursh, A., A. Ballantyne, L. Cooper, M. Maneta, J. Kimball, and J. Watts. 2017. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology 23, no. 5: 2090–103. doi:10.1111/gcb.13489.
  • Joly, K., R. R. Jandt, and D. R. Klein. 2009. Decrease of lichens in Arctic ecosystems: The role of wildfire, caribou, reindeer, competition and climate in north‐western Alaska. Polar Research 28, no. 3: 433–42. doi:10.1111/j.1751-8369.2009.00113.x.
  • Klein, D. R., and M. Shulski. 2011. The role of lichens, reindeer, and climate in ecosystem change on a Bering Sea island. Arctic 64, no. 3: 353–61. doi:10.14430/arctic4124.
  • Körner, C., and E. Hiltbrunner. 2017. The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics 30: 16–21. doi:10.1016/j.ppees.2017.04.004.
  • Lafleur, P. M., and E. R. Humphreys. 2018. Tundra shrub effects on growing season energy and carbon dioxide exchange. Environmental Research Letters 13, no. 5: 055001. doi:10.1088/1748-9326/aab863.
  • Lawrence, D. M., and S. C. Swenson. 2011. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters 6, no. 4: 045504. doi:10.1088/1748-9326/6/4/045504.
  • Lembrechts, J. J., J. Aalto, M. B. Ashcroft, P. De Frenne, M. Kopecký, J. Lenoir, M. Luoto, et al. 2020. SoilTemp: A global database of near-surface temperature. Global Change Biology 26, no. 11: 6616–29. doi:10.1111/gcb.15123.
  • Loranty, M. M., B. W. Abbott, D. Blok, T. A. Douglas, H. E. Epstein, B. C. Forbes, B. M. Jones, et al. 2018. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, no. 17: 5287–313. doi:10.5194/bg-15-5287-2018.
  • Macander, M. J., P. R. Nelson, T. W. Nawrocki, G. V. Frost, K. M. Orndahl, E. C. Palm, A. F. Wells, et al. 2022. Time-series maps reveal widespread change in plant functional type cover across Arctic and boreal Alaska and Yukon. Environmental Research Letters 17, no. 5: 054042. doi:10.1088/1748-9326/ac6965.
  • Macias-Fauria, M., T. Helle, A. Niva, H. Posio, and M. Timonen. 2008. Removal of the lichen mat by reindeer enhances tree growth in a northern Scots pine forest. Canadian Journal of Forest Research 38, no. 12: 2981–93. doi:10.1139/X08-135.
  • Maliniemi, T., J. Kapfer, P. Saccone, A. Skog, and R. Virtanen. 2018. Long‐term vegetation changes of treeless heath communities in northern Fennoscandia: Links to climate change trends and reindeer grazing. Journal of Vegetation Science 29, no. 3: 469–79. doi:10.1111/jvs.12630.
  • Mekonnen, Z. A., W. J. Riley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahana, A. L. Breen, et al. 2021. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16, no. 5: 053001. doi:10.1088/1748-9326/abf28b.
  • MET Norway. 2019. Meteorological data. www.met.no
  • Mikola, J., T. Virtanen, M. Linkosalmi, E. Vähä, J. Nyman, O. Postagonova, A. Räsänen, et al. 2018. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra–coupling field observations with remote sensing data. Biogeosciences 15, no. 9: 2781–801. doi:10.5194/bg-15-2781-2018.
  • Myers‐Smith, I. H., and D. S. Hik. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow–shrub interactions. Ecology and Evolution 3, no. 11: 3683–700. doi:10.1002/ece3.710.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6, no. 4: 045509. doi:10.1088/1748-9326/6/4/045509.
  • Nystuen, K. O., K. Sundsdal, Ø. H. Opedal, H. Holien, G. R. Strimbeck, and B. J. Graae. 2019. Lichens facilitate seedling recruitment in alpine heath. Journal of Vegetation Science 30, no. 5: 868–80. doi:10.1111/jvs.12773.
  • Odland, A., G. Bandekar, I. Hanssen-Bauer, and S. M. Sandvik. 2017. Relationships between vegetation, air and soil temperatures on Norwegian mountain summits. Geografiska Annaler: Series A, Physical Geography 99, no. 4: 1–14. doi:10.1080/04353676.2017.1333324.
  • O’Donnell, J. A., V. E. Romanovsky, J. W. Harden, and A. D. McGuire. 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Science 174, no. 12: 646–51. doi:10.1097/SS.0b013e3181c4a7f8.
  • Oke, T. R. 2002. Boundary layer climates. 2nd ed. London: Routledge.
  • Olefeldt, D., M. R. Turetsky, P. M. Crill, and A. D. McGuire. 2013. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology 19, no. 2: 589–603. doi:10.1111/gcb.12071.
  • Opedal, Ø. H., W. S. Armbruster, and B. J. Graae. 2015. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity 8, no. 3: 305–15. doi:10.1080/17550874.2014.987330.
  • Pajunen, A. M., J. Oksanen, and R. Virtanen. 2011. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. Journal of Vegetation Science 22, no. 5: 837–46. doi:10.1111/j.1654-1103.2011.01285.x.
  • Pape, R., and J. Löffler. 2017. Determinants of Arctic-alpine pasture resources: The need for a spatially and functionally fine-scaled perspective. Geografiska Annaler: Series A 99, no. 4: 1–18. doi:10.1080/04353676.2017.1368833.
  • Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. National Climate Change 3, no. 7: 673–7. doi:10.1029/2005JG000013.
  • Porada, P., A. Ekici, and C. Beer. 2016. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere 10, no. 5: 2291. doi:10.5194/tc-10-2291-2016.
  • R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Saito, M., T. Kato, and Y. Tang. 2009. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology 15, no. 1: 221–8. doi:10.1111/j.1365-2486.2008.01713.x.
  • Scherrer, D., and C. Körner. 2011. Topographically controlled thermal‐habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38, no. 2: 406–16. doi:10.1111/j.1365-2699.2010.02407.x.
  • Schimel, J. P., C. Bilbrough, and J. M. Welker. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology & Biochemistry 36, no. 2: 217–27. doi:10.1016/j.soilbio.2003.09.008.
  • Stewart-Oaten, A., W. W. Murdoch, and K. R. Parker. 1986. Environmental impact assessment: “Pseudoreplication” in time? Ecology 67, no. 4: 929–40. doi:10.2307/1939815.
  • Sundstøl, S. A., and A. Odland. 2017. Responses of alpine vascular plants and lichens to soil temperatures. Ann. Annales Botanici Fennici 54, no. 1–3: 17–28. doi:10.5735/085.054.0304.
  • Vanneste, T., O. Michelsen, B. J. Graae, M. O. Kyrkjeeide, H. Holien, K. Hassel, S. Lindmo, et al. 2017. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research 32, no. 4: 1–15. doi:10.1007/s11284-017-1472-1.
  • van Zuijlen, K., R. E. Roos, K. Klanderud, S. I. Lang, and J. Asplund. 2020. Mat-forming lichens affect microclimate and litter decomposition by different mechanisms. Fungal Ecology 44: 100905. doi:10.1016/j.funeco.2019.100905.
  • Wilson, S. D., and C. Nilsson. 2009. Arctic alpine vegetation change over 20 years. Global Change Biology 15, no. 7: 1676–84. doi:10.1111/j.1365-2486.2009.01896.x.
  • Winkler, M., A. Lamprecht, K. Steinbauer, K. Hülber, J. P. Theurillat, F. Breiner, P. Choler, et al. 2016. The rich sides of mountain summits–a pan‐European view on aspect preferences of alpine plants. Journal of Biogeography 43, no. 11: 2261–73. doi:10.1111/jbi.12835.
  • Wundram, D., R. Pape, and J. Löffler. 2010. Alpine soil temperature variability at multiple scales. Arctic, Antarctic, and Alpine Research 42, no. 1: 117–28. doi:10.1657/1938-4246-42.1.117.
  • Zamin, T. J., and P. Grogan. 2012. Birch shrub growth in the low Arctic: The relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environmental Research Letters 7, no. 3: 034027. doi:10.1088/1748-9326/7/3/034027.