996
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Tundra conservation challenged by forest expansion in a complex mountainous treeline ecotone as revealed by spatially explicit tree aboveground biomass modeling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2220208 | Received 06 Jan 2022, Accepted 25 May 2023, Published online: 06 Jul 2023

References

  • Abaimov, A. P., J. A. Lesinski, O. Martinsson, and L. I. Milyutin. 1998. Variability and ecology of Siberian larch species. Report 43. Umeå: Swedish University of Agricultural Sciences, Department of Silviculture.
  • Arctic Climate Impact Assessment. 2004. Impacts of a warming Arctic-Arctic climate impact assessment. Cambridge, UK: Cambridge University Press.
  • Arkhipov, S. M., V. Kotlyakov, Y.-M. K. Punning, V. Zogorodnov, V. I. Nikolayev, V. S. Zagorodnov, Y. Y. Macheret, et al. 2008. Deep drilling of glaciers: Russian projects in the Arctic (1975-1995). Moscow, PANGAEA: Institute of Geography, Russian Academy of Sciences. doi:10.1594/PANGAEA.707363.
  • Bergengren, J. C., S. L. Thompson, D. Pollard, and R. M. DeConto. 2001. Modeling global climate–vegetation interactions in a doubled CO2 world. Climatic Change 50, no. 1/2: 31–20. doi:10.1023/A:1010609620103.
  • Bonan, G. B. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, no. 5882: 1444–9. doi:10.1126/science.1155121.
  • Bonan, G. B., F. S. Chapin, and S. L. Thompson. 1995. Boreal forest and tundra ecosystems as components of the climate system. Climatic Change 29, no. 2: 145–67. doi:10.1007/BF01094014.
  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson. 2003. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology 9, no. 11: 1543–66. doi:10.1046/j.1365-2486.2003.00681.x.
  • Cairns, D. M., and J. Moen. 2004. Herbivory influences tree lines. Journal of Ecology 92, no. 6: 1019–24. doi:10.1111/j.1365-2745.2004.00945.x.
  • Callaghan, T. V., B. A. Carlsson. 1997. Impacts of climate change on demographic processes and population dynamics in Arctic plants. In Global change and Arctic terrestrial ecosystems, ed. W. C. Oechel, T. V. Callaghan, T. Gilmanov, J. I. Holten, B. Maxwell, U. Molau, and S. B, 201–14. Dordrecht: Springer.
  • Chapin, F. S., and A. M. Starfield. 1997. Time lags and novel ecosystems in response to transient climatic change in Arctic Alaska. Climatic Change 35, no. 4: 449–61. doi:10.1023/A:1005337705025.
  • Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner. 2015. SAGA: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8: 1991–2007. doi:10.5194/gmd-8-1991-2015.
  • Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, no. 656: 553–97. doi:10.1002/qj.828.
  • Devi, N. M., G. А. A. Kukarskih VV, А. A. Galimova, V. S. Mazepa, and A. A. Grigoriev. 2020. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. Forest Ecosystems 7, no. 1: 7. doi:10.1186/s40663-020-0216-9.
  • Druel, A., P. Clais, G. Krinner, and P. Peylin. 2019. Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model. Journal of Advances in Modeling Earth Systems 11, no. 7: 2020–35. doi:10.1029/2018MS001531.
  • Epstein, H., Q. Yu, J. Kaplan, and H. Lischke. 2007. Simulating future changes in Arctic and subarctic vegetation. Computing in Science & Engineering 9, no. 4: 12–23. doi:10.1109/MCSE.2007.84.
  • ESRI. 2021. High-resolution satellite and aerial imagery, typically within 3-5 years [ basemap]. Scale not given. “ basemap”. https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed December 15, 2020).
  • Falkowski, M. J., A. T. Hudak, N. L. Crookston, P. Gessler, E. H. Uebler, and A. Smith. 2010. Landscape-scale parameterization of a tree-level forest growth model: A k-nearest neighbour imputation approach incorporating LiDAR data. Canadian Journal of Forest Research 40, no. 2: 184–99. doi:10.1139/X09-183.
  • Foley, J. A., S. Levis, I. C. Prentice, D. Pollard, and S. L. Thompson. 1998. Coupling dynamic models of climate and vegetation. Global Change Biology 4, no. 5: 561–79. doi:10.1046/j.1365-2486.1998.t01-1-00168.x.
  • Foster, A. C., A. H. Armstrong, J. K. Shuman, H. H. Shugart, B. M. Rogers, M. C. Mack, S. J. Goetz, and J. K. Ranson. 2019. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling 409: 108765. doi:10.1016/j.ecolmodel.2019.108765.
  • Gamache, I., and S. Payette. 2004. Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada. Journal of Ecology 92, no. 5: 835–45. doi:10.1111/j.0022-0477.2004.00913.x.
  • Giorgetta, M., J. Jungclaus, C. Reick, S. Legutke, V. Brovkin, T. Crueger, M. Esch, K. Fieg, K. Glushak, V. Gayler, et al. 2012a. CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The rcp26 experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. doi:10.1594/WDCC/CMIP5.MXELr2.
  • Giorgetta, M., J. Jungclaus, C. Reick, S. Legutke, V. Brovkin, T. Crueger, M. Esch, K. Fieg, K. Glushak, V. Gayler, et al. 2012b. CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The rcp45 experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. doi:10.1594/WDCC/CMIP5.MXMRr4.
  • Giorgetta, M., J. Jungclaus, C. Reick, S. Legutke, V. Brovkin, T. Crueger, M. Esch, K. Fieg, K. Glushak, V. Gayler, et al. 2012c. CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-MR model: The rcp85 experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. doi:10.1594/WDCC/CMIP5.MXMRr8.
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7, no. 1. doi:10.1038/s41597-020-0453-3.
  • Harsch, M. A., P. E. Hulme, M. S. McGlone, and R. P. Duncan. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12, no. 10: 1040–9. doi:10.1111/j.1461-0248.2009.01355.x.
  • Hijmans, R. J. 2017. Raster: Geographic data analysis and modeling, R package version 2.6-7. https://CRAN.R-project.org/package=raster
  • Holland, M. M., and C. M. Bitz. 2003. Polar amplification of climate change in coupled models. Climate Dynamics 21, no. 3–4: 221–32. doi:10.1007/s00382-003-0332-6.
  • Holtmeier, F.-K., and G. Broll. 2009. Altitudinal and polar treelines in the northern hemisphere causes and response to climate change. Polarforschung 79: 139–53. http://hdl.handle.net/10013/epic.35706.d001
  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK & Meyer LA (eds.)]. 151. Geneva, Switzerland: IPCC.
  • IPCC. 2021. Climate change 2021: The physical science basis. Contribution of working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R & Zhou B (eds.)]. Cambridge University Press. In Press.
  • Ito, A., R. Cpo, A. Gädeke, P. Ciais, J. Chang, M. Chen, L. François, et al. 2020. Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters 15, no. 4: 44006. doi:10.1088/1748-9326/ab702b.
  • Kagawa, A., D. Naito, A. Sugimoto, and T. C. Maximov. 2003. Effects of spatial and temporal variability in soil moisture on widths and δ13C values of eastern Siberian tree rings. Journal of Geophysical Research 108, no. D16: 4500. doi:10.1029/2002JD003019.
  • Kirilenko, A. P., and A. M. Solomon. 1998. Modeling dynamic vegetation response to rapid climate change using bioclimatic classification. Climatic Change 38, no. 1: 15–49. doi:10.1023/A:1005379630126.
  • Krieger, G., M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, et al. 2013. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica 89: 83–98. doi:10.1016/j.actaastro.2013.03.008.
  • Kruse, S. 2023. StefanKruse/LAVESI: LAVESI-WIND with landscape (v2.0). Zenodo. doi:10.5281/zenodo.7505539.
  • Kruse, S., A. Gerdes, N. J. Kath, L. S. Epp, K. R. Stoof-Leichsenring, L. A. Pestryakova, and U. Herzschuh. 2019. Dispersal distances and migration rates at the Arctic treeline in Siberia—A genetic and simulation-based study. Biogeosciences 16, no. 6: 1211–24. doi:10.5194/bg-16-1211-2019.
  • Kruse, S., A. Gerdes, N. J. Kath, and U. Herzschuh. 2018. Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0. Geoscience Model Development 11, no. 11: 4451–67. doi:10.5194/gmd-11-4451-2018.
  • Kruse, S., and U. Herzschuh. 2022. Regional opportunities for tundra conservation in the next 1000 years. eLife 11: e75163. doi:10.7554/eLife.75163.
  • Kruse, S., U. Herzschuh, L. Schulte, S. M. Stuenzi, F. Brieger, E. S. Zakharov, and L. A. Pestryakova. 2020. Forest inventories on circular plots on the expedition Chukotka 2018, NE Russia. PANGAEA. doi: 10.1594/PANGAEA.923638.
  • Kruse, S., S. M. Stuenzi, J. Boike, M. Langer, J. Gloy, and U. Herzschuh. 2022. Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia. Geoscientific Model Development 15, no. 6: 2395–422. doi:10.5194/gmd-15-2395-2022.
  • Kruse, S., M. Wieczorek, F. Jeltsch, and U. Herzschuh. 2016. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix. Ecological Modelling 338: 101–21. doi:10.1016/j.ecolmodel.2016.08.003.
  • Landis, J. R., and G. G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33, no. 1: 159–74. doi:10.2307/2529310.
  • Liang, M., A. Sugimoto, S. Tei, T. Bragin IV, S. Morozumi, T. Shingubara, R. Maximov, K. S. I. TC, T. A. Velivetskaya, and A. V. Ignatiev. 2014. Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia. Polar Science 8, no. 4: 327–41. doi:10.1016/j.polar.2014.07.008.
  • Menne, M. J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, et al. 2012. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce. doi:10.7289/V5D21VHZ.
  • Mienna, I. M., J. D. M. Speed, K. Klanderud, G. Austrheim, E. Næsset, and O. M. Bollandsås. 2020. The relative role of climate and herbivory in driving treeline dynamics along a latitudinal gradient. Journal of Vegetation Science 31, no. 3: 392–402. doi:10.1111/jvs.12865.
  • Miller, G. H., R. B. Alley, J. Brigham-Grette, J. J. Fitzpatrick, L. Polyak, M. Serreze, and J. W. C. White. 2010. Arctic amplification: Can the past constrain the future? Quaternary Science Reviews 29, no. 15–16: 1779–90. doi:10.1016/j.quascirev.2010.02.008.
  • Opel, T., D. Fritzsche, and H. Meyer. 2013. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate of the Past 9, no. 5: 2379–89. doi:10.5194/cp-9-2379-2013.
  • R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Rees, W. G., A. Hofgaard, S. Boudreau, D. M. Cairns, K. Harper, S. Mamet, I. Mathisen, Z. Swirad, and O. Tutubalina. 2020. Is subarctic forest advance able to keep pace with climate change? Global Change Biology 26, no. 7: 3965–77. doi:10.1111/gcb.15113.
  • Rupp, T. S., F. S. Chapin, and A. M. Starfield. 2000. Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north‐west Alaska. Global Change Biology 6, no. 5: 54–555. doi:10.1046/j.1365-2486.2000.00337.x.
  • Santoro, M., and O. Cartus. 2021. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis. doi:10.5285/5f331c418e9f4935b8eb1b836f8a91b8.
  • Santoro, M., O. Cartus, S. Mermoz, A. Bouvet, T. Le Toan, N. Carvalhais, D. Rozendaal, et al. 2018. GlobBiomass global above-ground biomass and growing stock volume datasets. http://globbiomass.org/products/global-mapping (accessed December 15, 2022).
  • Schmidt, N. M., B. Hardwick, O. Gilg, T. T. Høye, P. H. Krogh, H. Meltofte, A. Michelsen, et al. 2017. Interaction webs in Arctic ecosystems: Determinants of Arctic change? Ambio 46, no. S1: 12–25. doi:10.1007/s13280-016-0862-x.
  • Shevtsova, I., B. Heim, S. Kruse, J. Schröder, E. Troeva, L. Pestryakova, E. Zakharov, and U. Herzschuh. 2020. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environmental Research Letters 15, no. 8: 085006. doi:10.1088/1748-9326/ab9059.
  • Shevtsova, I., U. Herzschuh, B. Heim, and S. Kruse. 2023a. Forest density estimates in the vicinity of the Ilirney lake system region. Chukotka, Russia [ Data set]: Zenodo. doi:10.5281/zenodo.7505434.
  • Shevtsova, I., U. Herzschuh, B. Heim, and S. Kruse. 2023b. Landscape classes of combinations of elevation, slope angle, and aspect, for the Ilirney lake system region. Chukotka, Russia [Data set]: Zenodo. doi:10.5281/zenodo.7504172.
  • Shevtsova, I., U. Herzschuh, B. Heim, and S. Kruse. 2023c. Simulated above-ground biomass of forests (larch) aggregated over the vicinity of the Ilirney lake system region. [ Data set]. Chukotka, Russia: Zenodo. doi:10.5281/zenodo.7505616.
  • Shevtsova, I., U. Herzschuh, B. Heim, and S. Kruse. 2023d. Simulated spatially explicit above-ground biomass of forests (larch) in the vicinity of the Ilirney lake system region. Chukotka, Russia [Data set]: Zenodo. doi:10.5281/zenodo.7505549.
  • Shevtsova, I., U. Herzschuh, B. Heim, and S. Kruse. 2023e. Total forest (larch) cover aggregated over the vicinity of the Ilirney lake system region. Chukotka, Russia [Data set]: Zenodo. doi:10.5281/zenodo.7505640.
  • Shevtsova, I., U. Herzschuh, B. Heim, L. Schulte, S. Stünzi, L. A. Pestryakova, E. S. Zakharov, and S. Kruse. 2021. Recent above-ground biomass changes in central Chukotka (Russian Far East) using field sampling and Landsat satellite data. Biogeosciences 18, no. 11: 3343–66. doi:10.5194/bg-18-3343-2021.
  • Shevtsova, I., S. Kruse, U. Herzschuh, L. Schulte, F. Brieger, S. M. Stuenzi, B. Heim, E. I. Troeva, L. A. Pestryakova, and E. S. Zakharov. 2020a. Total above-ground biomass of 39 vegetation sites of central Chukotka from 2018. PANGAEA. doi:10.1594/PANGAEA.923719.
  • Shevtsova, I., S. Kruse, U. Herzschuh, L. Schulte, F. Brieger, S. M. Stuenzi, B. Heim, E. I. Troeva, L. A. Pestryakova, and E. S. Zakharov. 2020b. Individual tree and tall shrub partial above-ground biomass of central Chukotka in 2018. PANGAEA. doi:10.1594/PANGAEA.923784.
  • Shuman, J. K., A. C. Foster, H. H. Shugart, A. Hoffman-Hall, A. Krylov, T. Loboda, D. Ershov, and E. Sochilova. 2017. Fire disturbance and climate change: Implications for Russian forests. Environmental Research Letters 12, no. 3: 035003. doi:10.1088/1748-9326/aa5eed.
  • Shuman, J. K., H. H. Shugart, and O. N. Krankina. 2014. Testing individual-based models of forest dynamics: Issues and an example from the boreal forests of Russia. Ecological Modelling 293: 102–10. doi:10.1016/j.ecolmodel.2013.10.028.
  • Shuman, J. K., N. M. Tchebakova, E. I. Parfenova, A. J. Soja, H. H. Shugart, D. Ershov, and K. Holcomb. 2015. Forest forecasting with vegetation models across Russia. Canadian Journal of Forest Research 45, no. 2: 175–84. doi:10.1139/cjfr-2014-0138.
  • Sitch, S., C. Huntingford, N. Gedney, P. E. Levy, M. Lomas, S. L. Piao, R. Betts, et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 2015–2039. doi:10.1111/j.1365-2486.2008.01626.x.
  • Stehman, S. V. 1997. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment 62, no. 1: 77–89. doi:10.1016/S0034-4257(97)00083-7.
  • Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.
  • Wieczorek, M., S. Kruse, L. S. Epp, A. Kolmogorov, A. N. Nikolaev, I. Heinrich, and U. Herzschuh. 2017. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation-based study. Ecology 98, no. 9: 2343–55. doi:10.1002/ecy.1887.
  • Zevenbergen, L. W., and C. R. Thorne. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12, no. 1: 12–56. doi:10.1002/esp.3290120107.
  • Zhang, W., P. A. Miller, C. Jansson, P. Samuelsson, J. Mao, and B. Smith. 2018. Self‐amplifying feedbacks accelerate greening and warming of the Arctic. Geophysical Research Letters 45, no. 14: 7102–11. doi:10.1029/2018GL077830.
  • Zhang, W., P. A. Miller, B. Smith, R. Wania, T. Koenigk, and R. Döscher. 2013. Tundra shrubification and tree-line advance amplify Arctic climate warming: Results from an individual-based dynamic vegetation model. Environmental Research Letters 8, no. 3: 34023. doi:10.1088/1748-9326/8/3/034023.