1,524
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Multi-proxy evidence of unprecedented hydroclimatic change in a high Arctic proglacial lake: Linnévatnet, Svalbard

ORCID Icon, , , , , & show all
Article: 2223403 | Received 26 May 2022, Accepted 01 Jun 2023, Published online: 11 Jul 2023

References

  • Abdi, H., and L. J. Williams. 2010. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2, no. 4: 433–22. doi:10.1002/wics.101.
  • Bakke, J., N. Balascio, W. G. van der Bilt, R. Bradley, W. J. D’Andrea, M. Gjerde, S. Ólafsdóttir, T. Røthe, and G. De Wet. 2018. The Island of Amsterdamøya: A key site for studying past climate in the Arctic archipelago of Svalbard. Quaternary Science Reviews 183: 157–63. doi:10.1016/j.quascirev.2017.11.005.
  • Balascio, N. L., W. J. D’Andrea, M. Gjerde, and J. Bakke. 2018. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes. Quaternary Science Reviews 183: 177–87. doi:10.1016/j.quascirev.2016.11.036.
  • Ballantyne, C. K. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935–2017.
  • Berge, J., G. Johnsen, F. Nilsen, B. Gulliksen, and D. Slagstad. 2005. Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Marine Ecology Progress Series 303: 167–75. doi:10.3354/meps303167.
  • Büntgen, U., V. S. Myglan, F. C. Ljungqvist, M. McCormick, N. Di Cosmo, M. Sigl, J. Jungclaus, S. Wagner, P. J. Krusic, and J. Esper. 2016. Cooling and societal change during the late antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9: 231–6. doi:10.1038/ngeo2652.
  • Church, M., and J. M. Ryder. 1972. Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83, no. 10: 3059–72. doi:10.1130/0016-7606(1972)83[3059:PSACOF]2.0.CO;2.
  • Croudace, I. W., A. Rindby, and R. G. Rothwell. 2006. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Special Publication-Geological Society of London 267, no. 1: 51. doi:10.1144/GSL.SP.2006.267.01.04.
  • Dallmann, W. K. 2015. Geoscience Atlas of Svalbard. Norsk Polarinstitutt Rapportserie 148: 1e292.
  • Dean, W. E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. Journal of Sedimentary Research 44: 242–8.
  • Divine, D., E. Isaksson, T. Martma, H. A. J. Meijer, J. Moore, V. Pohjola, R. S. W. van de Wal, and F. Godtliebsen. 2011. Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Research 30, no. 1: 7379. doi:10.3402/polar.v30i0.7379.
  • Eckerstorfer, M., and H. H. Christiansen. 2011. The “High Arctic maritime snow climate” in central Svalbard. Arctic, Antarctic, and Alpine Research 43, no. 1: 11–21. doi:10.1657/1938-4246-43.1.11.
  • Farnsworth, W. R., L. Allaart, Ó. Ingólfsson, H. Alexanderson, M. Forwick, R. Noormets, M. Retelle, and A. Schomacker. 2020. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth-Science Reviews 208: 103249. doi:10.1016/j.earscirev.2020.103249.
  • Francus, P., and C. A. Asikainen. 2001. Sub-sampling unconsolidated sediments: A solution for the preparation of undistrubed thin-sections from clay-rich sediments. Journal of Paleolimnology 26, no. 3: 323–6. doi:10.1023/A:1017572602692.
  • Francus, P., R. S. Bradley, M. B. Abbott, W. Patridge, and F. Keimig. 2002. Paleoclimate studies of minerogenic sediments using annually resolved textural parameters. Geophysical Research Letters 29, no. 20: 59-1–59–4. doi:10.1029/2002GL015082.
  • Francus, P., and P. Nobert. 2007. An integrated computer system to acquire, process, measure and store images of laminated sediments. 4th International Limnogeology Congress, July 11–14, Barcelona.
  • Geyman, E. C., W. Jj van Pelt, A. C. Maloof, H. F. Aas, and J. Kohler. 2022. Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature 601, no. 7893: 374–9. doi:10.1038/s41586-021-04314-4.
  • Hald, M., C. Andersson, H. Ebbesen, E. Jansen, D. Klitgaard-Kristensen, B. Risebrobakken, G. R. Salomonsen, M. Sarnthein, H. P. Sejrup, and R. J. Telford. 2007. Variations in temperature and extent of Atlantic water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, no. 25–28: 3423–40. doi:10.1016/j.quascirev.2007.10.005.
  • Hetzinger, S., J. Halfar, Z. Zajacz, and M. Wisshak. 2019. Early start of 20th-century Arctic sea-ice decline recorded in Svalbard coralline algae. Geology 47, no. 10: 963–7. doi:10.1130/G46507.1.
  • Hole, G. M., T. Rawson, W. R. Farnsworth, A. Schomacker, Ó. Ingólfsson, and M. Macias‐Fauria. 2021. A driftwood‐based record of Arctic sea ice during the last 500 years from northern Svalbard reveals sea ice dynamics in the Arctic Ocean and Arctic peripheral seas. Journal of Geophysical Research: Oceans 126: e2021JC017563.
  • Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, and H.-M. Zhang. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate 30, no. 20: 8179–205. doi:10.1175/JCLI-D-16-0836.1.
  • Husson, F., J. Josse, S. Le, J. Mazet, and M. F. Husson. 2016. Package ‘factominer. An R Package 96: 698.
  • Isaksson, E., J. Kohler, V. Pohjola, J. Moore, M. Igarashi, L. Karlöf, T. Martma, H. Meijer, H. Motoyama, and R. Vaikmäe. 2005. Two ice-core δ18O records from Svalbard illustrating climate and sea-ice variability over the last 400 years. The Holocene 15, no. 4: 501–9. doi:10.1191/0959683605hl820rp.
  • Jomelli, V., T. Lane, V. Favier, V. Masson-Delmotte, D. Swingedouw, V. Rinterknecht, I. Schimmelpfennig, D. Brunstein, D. Verfaillie, and K. Adamson. 2016. Paradoxical cold conditions during the medieval climate anomaly in the Western Arctic. Scientific Reports 6, no. 1: 1–9. doi:10.1038/srep32984.
  • Kassambara, A., and F. Mundt. 2017. Package ‘factoextra.’ Extract and visualize the results of multivariate data analyses. Accessed 30 August 2022. https://github.com/kassambara/factoextra.
  • Kjellman, S. E., A. Schomacker, E. K. Thomas, L. Håkansson, S. Duboscq, A. A. Cluett, W. R. Farnsworth, L. Allaart, O. C. Cowling, and N. P. McKay. 2020. Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions. Quaternary Science Reviews 240: 106388. doi:10.1016/j.quascirev.2020.106388.
  • Lamoureux, S. F. 1994. Embedding unfrozen lake sediments for thin section preparation. Journal of Paleolimnology 10, no. 2: 141–6. doi:10.1007/BF00682510.
  • Lapointe, F., and R. S. Bradley. 2021. Little Ice Age abruptly triggered by intrusion of Atlantic waters into the Nordic Seas. Science Advances 7, no. 51: eabi8230. doi:10.1126/sciadv.abi8230.
  • Lapointe, F., R. S. Bradley, P. Francus, N. L. Balascio, M. B. Abbott, J. S. Stoner, G. St-Onge, A. De Coninck, and T. Labarre. 2020. Annually resolved Atlantic sea surface temperature variability over the past 2,900 y. Proceedings of the National Academy of Sciences 117, no. 44: 27171–8. doi:10.1073/pnas.2014166117.
  • Lapointe, F., P. Francus, S. F. Lamoureux, M. Saïd, and S. Cuven. 2012. 1750 years of large rainfall events inferred from particle size at East Lake, Cape Bounty, Melville Island, Canada. Journal of Paleolimnology 48, no. 1: 159–73. doi:10.1007/s10933-012-9611-8.
  • Lapointe, F., P. Francus, J. S. Stoner, M. B. Abbott, N. L. Balascio, T. L. Cook, R. S. Bradley, S. L. Forman, M. Besonen, and G. St-Onge. 2019. Chronology and sedimentology of a new 2.9 ka annually laminated record from South Sawtooth Lake, Ellesmere Island. Quaternary Science Reviews 222: 105875. doi:10.1016/j.quascirev.2019.105875.
  • Leon, B. 2009. Comparison of lamination stratigraphies of cores recovered from the proximal basin of Lake Linne, Svalbard, Norway. Mount Holyoke College. https://scarab.bates.edu/geology_theses/35/.
  • Leonard, E. M. 1997. The relationship between glacial activity and sediment production: Evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17, no. 3: 319–30. doi:10.1023/A:1007948327654.
  • Macias Fauria, M., A. Grinsted, S. Helama, J. Moore, M. Timonen, T. Martma, E. Isaksson, and M. Eronen. 2010. Unprecedented low twentieth century winter sea ice extent in the Western Nordic Seas since AD 1200. Climate Dynamics 34, no. 6: 781–95. doi:10.1007/s00382-009-0610-z.
  • Moreno-Chamarro, E., D. Zanchettin, K. Lohmann, and J. H. Jungclaus. 2017. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Climate Dynamics 48, no. 3–4: 727–44. doi:10.1007/s00382-016-3106-7.
  • Nesje, A. 1992. A piston corer for lacustrine and marine sediments. Arctic and Alpine Research 24, no. 3: 257–9. doi:10.2307/1551667.
  • Nilsen, F., F. Cottier, R. Skogseth, and S. Mattsson. 2008. Fjord–shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28, no. 14: 1838–53. doi:10.1016/j.csr.2008.04.015.
  • Nordli, P. Ø., I. Hanssen-Bauer, and E. Førland. 1996. Homogeneity analyses of temperature and precipitation series from Svalbard and Jan Mayen (DNMI-KLIMA report 16/96). Oslo: Norwegian Meteorological Institute.
  • Nordli, Ø., R. Przybylak, A. E. Ogilvie, and K. Isaksen. 2014. Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898–2012. Polar Research 33, no. 1: 21349. doi:10.3402/polar.v33.21349.
  • Nowak, A., R. Hodgkins, A. Nikulina, M. Osuch, T. Wawrzyniak, J. Kavan, E. Łepkowska, M. Majerska, K. Romashova, and I. Vasilevich. 2021 . From land to fjords: The review of Svalbard hydrology from 1970 to 2019. State of Environmental Science in Svalbard (SESS) report 2020. https://sios-svalbard.org/SESS_Issue3.
  • Nowak, A., and A. Hodson. 2013. Hydrological response of a High-Arctic catchment to changing climate over the past 35 years: A case study of Bayelva watershed, Svalbard. Polar Research 32, no. 1: 19691. doi:10.3402/polar.v32i0.19691.
  • Ohta, Y., A. Hjelle, A. Andresen, W. Dallmann, and O. Salvigsen. 1992. Geological map of Svalbard, 1: 100,000, sheet B9G, Isfjorden. Norsk Polarinstitutt Temakart. 16. Norwegian Polar Institute Oslo.
  • Ohta, Y., A. Hjelle, A. Andresen, W. Dallmann, and O. Sålvigsen. 1991. Geological map of Svalbard, 1: 100 000. Sheet B9G Isfjorden, with description. Norsk Polarinstitutt Temakart. 16.
  • Osborn, T. J., S. C. Raper, and K. R. Briffa. 2006. Simulated climate change during the last 1,000 years: Comparing the ECHO-G general circulation model with the MAGICC simple climate model. Climate Dynamics 27, no. 2–3: 185–97. doi:10.1007/s00382-006-0129-5.
  • Paasche, Ø., and J. Bakke. 2015. The fleeting glaciers of the Arctic. In The New Arctic, eds. B. Evengård, J. N. Larsen, and Ø. Paasche. Cham: Springer, 79–93.
  • Peral, M., W. E. Austin, and R. Noormets. 2022. Identification of Atlantic water inflow on the north Svalbard shelf during the Holocene. Journal of Quaternary Science 37, no. 1: 86–99. doi:10.1002/jqs.3374.
  • Philipps, W., J. Briner, L. Gislefoss, H. Linge, T. Koffman, D. Fabel, S. Xu, and A. Hormes. 2017. Late Holocene glacier activity at inner Hornsund and Scottbreen, southern Svalbard. Journal of Quaternary Science 32, no. 4: 501–15. doi:10.1002/jqs.2944.
  • Potter, N. L. 2017. Late-season high-sedimentation events in a sediment trap record from Linnévatnet, Svalbard, Norway. Standard Theses 31. Bates College.
  • Ramsey, C. B. 2008. Deposition models for chronological records. Quaternary Science Reviews 27, no. 1–2: 42–60. doi:10.1016/j.quascirev.2007.01.019.
  • Rasmussen, T. L., M. Forwick, and A. Mackensen. 2012. Reconstruction of inflow of Atlantic Water to Isfjorden, Svalbard during the Holocene: Correlation to climate and seasonality. Marine Micropaleontology 94: 80–90. doi:10.1016/j.marmicro.2012.06.008.
  • Reimer, P. J., W. E. Austin, E. Bard, A. Bayliss, P. G. Blackwell, C. B. Ramsey, M. Butzin, H. Cheng, R. L. Edwards, and M. Friedrich. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, no. 4: 725–57. doi:10.1017/RDC.2020.41.
  • Retelle, M., H. Christiansen, A. Hodson, A. Nikulina, M. Osuch, K. Poleshuk, K. Romashova, S. Roof, L. Rouyet, and S. M. Strand. 2019. Environmental monitoring in the Kapp Linne-Gronfjorden Region (KLEO). https://sios-svalbard.org/sites/sios-svalbard.org/files/common/SESS_2019_03_KLEO.pdf.
  • Reusche, M., K. Winsor, A. E. Carlson, S. A. Marcott, D. H. Rood, A. Novak, S. Roof, M. Retelle, A. Werner, and M. Caffee. 2014. 10Be surface exposure ages on the late-Pleistocene and Holocene history of Linnébreen on Svalbard. Quaternary Science Reviews 89: 5–12. doi:10.1016/j.quascirev.2014.01.017.
  • Schiefer, E., D. Kaufman, N. McKay, M. Retelle, A. Werner, and S. Roof. 2018. Fluvial suspended sediment yields over hours to millennia in the High Arctic at proglacial Lake Linnévatnet, Svalbard. Earth Surface Processes and Landforms 43, no. 2: 482–98. doi:10.1002/esp.4264.
  • Sigl, M., M. Winstrup, J. R. McConnell, K. C. Welten, G. Plunkett, F. Ludlow, U. Büntgen, M. Caffee, N. Chellman, and D. Dahl-Jensen. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, no. 7562: 543–9. doi:10.1038/nature14565.
  • Skirbekk, K., D. K. Kristensen, T. L. Rasmussen, N. Koç, and M. Forwick. 2010. Holocene climate variations at the entrance to a warm Arctic fjord: Evidence from Kongsfjorden trough, Svalbard. Geological Society, London, Special Publications 344, no. 1: 289–304. doi:10.1144/SP344.20.
  • Ślubowska-Woldengen, M., T. L. Rasmussen, N. Koç, D. Klitgaard-Kristensen, F. Nilsen, and A. Solheim. 2007. Advection of Atlantic water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quaternary Science Reviews 26, no. 3–4: 463–78. doi:10.1016/j.quascirev.2006.09.009.
  • Snyder, J., G. Miller, A. Werner, A. Jull, and T. Stafford Jr. 1994. AMS-radiocarbon dating of organic-poor lake sediment, an example from Linnévatnet, Spitsbergen, Svalbard. The Holocene 4, no. 4: 413–21. doi:10.1177/095968369400400409.
  • Snyder, J., A. Werner, and G. Miller. 2000. Holocene cirque glacier activity in western Spitsbergen, Svalbard: Sediment records from proglacial Linnévatnet. The Holocene 10, no. 5: 555–63. doi:10.1191/095968300667351697.
  • Svendsen, J. I., and J. Mangerud. 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, no. 1: 45–57. doi:10.1177/095968369700700105.
  • van Exem, A., M. Debret, Y. Copard, C. Verpoorter, G. De Wet, N. Lecoq, P. Sorrel, A. Werner, S. Roof, and B. Laignel. 2019. New source-to-sink approach in an Arctic catchment based on hyperspectral core-logging (Lake Linné, Svalbard). Quaternary Science Reviews 203: 128–40. doi:10.1016/j.quascirev.2018.10.038.
  • Vihtakari, M. 2019. PlotSvalbard: PlotSvalbard-Plot research data from Svalbard on maps. R package version 0.8 5.
  • Vihtakari, M., W. G. Ambrose Jr, P. E. Renaud, M. L. Carroll, J. Berge, L. J. Clarke, F. Cottier, and H. Hop. 2017. A key to the past? Element ratios as environmental proxies in two Arctic bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 465: 316–32. doi:10.1016/j.palaeo.2016.10.020.
  • Werner, K., R. F. Spielhagen, D. Bauch, H. C. Hass, E. Kandiano, and K. Zamelczyk. 2011. Atlantic water advection to the eastern Fram Strait—Multiproxy evidence for late Holocene variability. Palaeogeography, Palaeoclimatology, Palaeoecology 308, no. 3–4: 264–76. doi:10.1016/j.palaeo.2011.05.030.
  • White, S., E. Moreno-Chamarro, D. Zanchettin, H. Huhtamaa, D. Degroot, M. Stoffel, and C. Corona. 2022. The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region. Climate of the Past 18, no. 4: 739–57. doi:10.5194/cp-18-739-2022.
  • Wickström, S., M. O. Jonassen, J. J. Cassano, and T. Vihma. 2020. Present temperature, precipitation, and rain‐on‐snow climate in Svalbard. Journal of Geophysical Research: Atmospheres 125: e2019JD032155.
  • Williams, G. 2017. Paleoenviromental reconstruction from the sediment record of the varved proglacial Linnévatnet, Svalbard, Norwegian High Arctic. https://scarab.bates.edu/geology_theses/35/.
  • Young, N. E., A. D. Schweinsberg, J. P. Briner, and J. M. Schaefer. 2015. Glacier maxima in Baffin Bay during the Medieval Warm Period coeval with Norse settlement. Science Advances 1, no. 11: e1500806. doi:10.1126/sciadv.1500806.
  • Zolitschka, B., P. Francus, A. E. Ojala, and A. Schimmelmann. 2015. Varves in lake sediments–a review. Quaternary Science Reviews 117L: 1–41. doi:10.1016/j.quascirev.2015.03.019.