583
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microbial ecology and activity of snow algae within a Pacific Northwest snowpack

& ORCID Icon
Article: 2233785 | Received 13 Oct 2022, Accepted 27 Jun 2023, Published online: 20 Dec 2023

References

  • Abatzoglou, J. T., D. E. Rupp, and P. W. Mote. 2014. Seasonal climate variability and change in the Pacific Northwest of the United States. Journal of Climate 27, no. 5: 2125–17. doi:10.1175/JCLI-D-13-00218.1.
  • Abo Elsoud, M. M., and E. M. El Kady. 2019. Current trends in fungal biosynthesis of chitin and chitosan. Bulletin of the National Research Centre 43, no. 1: 1–12. doi:10.1186/s42269-019-0105-y.
  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, no. 3: 403–10. doi:10.1016/S0022-2836(05)80360-2.
  • Averett, R. C., J. A. Leenheer, D. M. McKnight, and K. A. Thorn. 1994. Humic substances in the Suwannee River, Georgia: Interactions, properties, and proposed structures ( No. 2373). US Government Printing Office. doi:10.3133/wsp2373.
  • Badania, P. 1986. Ecology of snow algae 2. General Characteristics of Snow Algae 3: 407–15.
  • Bergk Pinto, B., L. Maccario, A. Dommergue, T. M. Vogel, and C. Larose. 2019. Do organic substrates drive microbial community interactions in Arctic snow? Frontiers in Microbiology 10: 2492. doi:10.3389/fmicb.2019.02492.
  • Bidigare, R. R., M. E. Ondrusek, M. C. Kennicutt, R. Iturriaga, H. R. Harvey, R. W. Hoham, and S. A. Macko. 1993. Evidence a photoprotective for secondary carotenoids of snow algae. Journal of Phycology 29, no. 4: 427–34. doi:10.1111/j.1529-8817.1993.tb00143.x.
  • Brown, S. P., and A. Jumpponen. 2019. Microbial ecology of snow reveals taxa-specific biogeographical structure. Microbial Ecology 77, no. 4: 946–58. doi:10.1007/s00248-019-01357-z.
  • Brown, S. P., B. J. Olson, and A. Jumpponen. 2015. Fungi and algae co-occur in snow: An issue of shared habitat or algal facilitation of heterotrophs? Arctic, Antarctic, and Alpine Research 47, no. 4: 729–49. doi:10.1657/AAAR0014-071.
  • Buchfink, B., C. Xie, and D. H. Huson. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12, no. 1: 59–60. doi:10.1038/nmeth.3176.
  • Callahan, B. J., P. J. McMurdie, and S. P. Holmes. 2017. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal 11, no. 12: 2639–43. doi:10.1038/ismej.2017.119.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13, no. 7: 581–3. doi:10.1038/nmeth.3869.
  • Cook, J. M., A. J. Hodson, A. S. Gardner, M. Flanner, A. J. Tedstone, C. Williamson, M. Tranter, J. Nilsson, R. Bryant, and M. Tranter. 2017. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. The Cryosphere 11, no. 6: 2611–32. doi:10.5194/tc-11-2611-2017.
  • Cornforth, D. M., and K. R. Foster. 2013. Competition sensing: The social side of bacterial stress responses. Nature Reviews Microbiology 11, no. 4: 285–93. doi:10.1038/nrmicro2977.
  • Davey, M. P., L. Norman, P. Sterk, M. Huete‐Ortega, F. Bunbury, B. K. W. Loh, S. Stockton, L.S. Peck, P. Convey, K.K. Newsham, and A. G. Smith. 2019. Snow algae communities in Antarctica: Metabolic and taxonomic composition. New Phytologist 222, no. 3: 1242–55. doi:10.1111/nph.15701.
  • Edwards, H. G., L. F. De Oliveira, C. S. Cockell, J. C. Ellis-Evans, and D. D. Wynn-Williams. 2004. Raman spectroscopy of senescing snow algae: Pigmentation changes in an Antarctic cold desert extremophile. International Journal of Astrobiology 3, no. 2: 125–9. doi:10.1017/S1473550404002034.
  • Engstrom, C. B., K. M. Yakimovich, and L. M. Quarmby. 2020. Variation in snow algae blooms in the coast range of British Columbia. Frontiers in Microbiology 11: 569. doi:10.3389/fmicb.2020.00569.
  • Fernández-Gomez, B., M. Richter, M. Schüler, J. Pinhassi, S. G. Acinas, J. M. González, and C. Pedros-Alio. 2013. Ecology of marine Bacteroidetes: A comparative genomics approach. The ISME Journal 7, no. 5: 1026–37. doi:10.1038/ismej.2012.169.
  • Fogg, G. E. 1967. Observations on the snow algae of the South Orkney islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 252, no. 777: 279–87.
  • Ganey, G. Q., M. G. Loso, A. B. Burgess, and R. J. Dial. 2017. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nature Geoscience 10, no. 10: 754–9. doi:10.1038/ngeo3027.
  • Gómez‐Pereira, P. R., M. Schüler, B. M. Fuchs, C. Bennke, H. Teeling, J. Waldmann, M. Richter, V. Barbe, E. Bataille, F.O. Glöckner, and R. Amann. 2012. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environmental Microbiology 14, no. 1: 52–66. doi:10.1111/j.1462-2920.2011.02555.x.
  • Gorton, H. L., and T. C. Vogelmann. 2003. Ultraviolet radiation and the Snow Alga Chlamydomonas nivalis (Bauer) Wille. Photochemistry and Photobiology 77, no. 6: 608–15. doi:10.1562/0031-8655(2003)0770608URATSA2.0.CO2.
  • Gorton, H. L., W. E. Williams, and T. C. Vogelmann. 2001. The light environment and cellular optics of the Snow Alga Chlamydomonas nivalis (Bauer) Wille. Photochemistry and Photobiology 73, no. 6: 611–20. doi:10.1562/0031-8655(2001)073<0611:TLEACO>2.0.CO;2.
  • Grinde, B. 1983. Vertical distribution of the snow alga Chlamydomonas nivalis (Chlorophyta, Volvocales). Polar Biology 2, no. 3: 159–62.
  • Hagedorn, B., and A. Flower. 2021. Conifer establishment and encroachment on subalpine meadows around Mt. Baker, WA, USA. Forests 12, no. 10: 1390. doi:10.3390/f12101390.
  • Hamilton, T. L., and J. Havig. 2017. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology 15, no. 2: 280–95. doi:10.1111/gbi.12219.
  • Hamilton, T. L., and J. R. Havig. 2020. Inorganic carbon addition stimulates snow algae primary productivity. The ISME Journal 14, no. 3: 857–60. doi:10.1038/s41396-018-0048-6.
  • Hansen, J., and L. Nazarenko. 2004. Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences 101, no. 2: 423–8. doi:10.1073/pnas.2237157100.
  • Hanzhi, L., L. Yantao, and R. T. Hill. 2022. Microalgal and bacterial auxin biosynthesis: Implications for algal biotechnology. Current Opinion in Biotechnology 73: 300–7. doi:10.1016/j.copbio.2021.09.006.
  • Harper, J. T. 1993. Glacier terminus fluctuations on Mount Baker, Washington, U.S.A., 1940–1990, and climatic variations. Arctic and Alpine Research 25, no. 4: 332–40. doi:10.2307/1551916.
  • Havig, J. R., and T. L. Hamilton. 2019. Snow algae drive productivity and weathering at volcanic rock-hosted glaciers. Geochimica et Cosmochimica Acta 247: 220–42. doi:10.1016/j.gca.2018.12.024.
  • Hisakawa, N., S. D. Quistad, E. R. Hester, D. Martynova, H. Maughan, E. Sala, F. Rohwer, and F. Rohwer. 2015. Metagenomic and satellite analyses of red snow in the Russian Arctic. PeerJ 3: e1491. doi:10.7717/peerj.1491.
  • Hodson, A. J., A. Nowak, J. Cook, M. Sabacka, E. S. Wharfe, D. A. Pearce, G. Vieira, and G. Vieira. 2017. Microbes influence the biogeochemical and optical properties of Maritime Antarctic snow. Journal of Geophysical Research: Biogeosciences 122, no. 6: 1456–70. doi:10.1002/2016JG003694.
  • Hoham, R. W. 1974a. Chlainomonas Kolii (Hardy Et Curl) Comb. Nov. (Chlorophyta, Volvocales), a revision of the snow alga, trachelomonas Kolii hardy et curl (Euglenophyta, Euglenales) 1, 2. Journal of Phycology 10, no. 4: 392–6.
  • Hoham, R. W. 1974b. New findings in the life history of the snow alga, Chlainomonas rubra (Stein et Brook) comb. nov. (Chlorophyta, Volvocales). Syesis 7: 239–47.
  • Hoham, R. W., J. D. Berman, H. S. Rogers, J. H. Felio, J. B. Ryba, and P. R. Miller. 2006. Two new species of green snow algae from upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45, no. 3: 319–30. doi:10.2216/04-103.1.
  • Hoham, R. W., and B. Duval. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Snow ecology. An interdisciplinary examination of snow-covered ecosystems, ed. H. G. Jones, J. W. Pomeroy, D. A. Walker, and R. W. Hoham, 168–228. Cambridge: Cambridge University Press.
  • Hoham, R. W., and H. U. Ling. 2000. Snow algae: The effects of chemical and physical factors on their life cycles and populations. In Journey to diverse microbial worlds: Adaptation to exotic environments, ed. J. Seckbach, 131–145. Dordrecht: Springer Netherlands.
  • Hoham, R. W., and J. E. Mullet. 1977. The life history and ecology of the snow alga Chloromonas cryophila sp. nov.(Chlorophyta, Volvocales). Phycologia 16, no. 1: 53–68. doi:10.2216/i0031-8884-16-1-53.1.
  • Hoham, R. W., and D. Remias. 2020. Snow and glacial algae: A review1. Journal of Phycology 56, no. 2: 264–82. doi:10.1111/jpy.12952.
  • Holzinger, A., M. C. Allen, and D. D. Deheyn. 2016. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. Journal of Photochemistry and Photobiology B: Biology 162: 412–20. doi:10.1016/j.jphotobiol.2016.07.001.
  • Hotaling, S., E. Hood, and T. L. Hamilton. 2017. Microbial ecology of mountain glacier ecosystems: Biodiversity, ecological connections and implications of a warming climate. Environmental Microbiology 19, no. 8: 2935–48. doi:10.1111/1462-2920.13766.
  • Huovinen, P., J. Ramírez, and I. Gómez. 2018. Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS Journal of Photogrammetry and Remote Sensing 146: 507–17. doi:10.1016/j.isprsjprs.2018.10.015.
  • Jacobsen, D., A. M. Milner, L. E. Brown, and O. Dangles. 2012. Biodiversity under threat in glacier-fed river systems. Nature Climate Change 2, no. 5: 361–4. doi:10.1038/nclimate1435.
  • Ji, M., W. Kong, H. Jia, C. Ding, A. M. Anesio, Y. Wang, and Y. G. Zhu. 2022. Similar heterotrophic communities but distinct interactions supported by red and green‐snow algae in the Antarctic Peninsula. New Phytologist 233, no. 3: 1358–68. doi:10.1111/nph.17764.
  • Jones, H. G., J. W. Pomeroy, D. A. Walker, and R. W. Hoham, Eds. 2001. Snow ecology: An interdisciplinary examination of snow-covered ecosystems. Cambridge: Cambridge University Press.
  • Kawecka, B. 1981. Biology and ecology of snow algae. Acta Hydrobiol 23: 211–5.
  • Kawecka, B. 1986. Ecology of snow algae. Polish Polar Research 7, no. 4: 407–415.
  • Kopylova, E., L. Noé, and H. Touzet. 2012. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, no. 24: 3211–7. doi:10.1093/bioinformatics/bts611.
  • Krug, L., A. Erlacher, K. Markut, G. Berg, and T. Cernava. 2020. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. The ISME Journal 14, no. 9: 2197–210. doi:10.1038/s41396-020-0677-4.
  • Lang, N. J. 1968. Electron microscopic studies Of extraplastidic Astaxanthin in Haematococcus 1 2. Journal of Phycology 4, no. 1: 12–19. doi:10.1111/j.1529-8817.1968.tb04670.x.
  • Letcher, P. M., M. J. Powell, and W. J. Davis. 2015. A new family and four new genera in Rhizophydiales (Chytridiomycota). Mycologia 107, no. 4: 808–30. doi:10.3852/14-280.
  • Leya, T. 2013. Snow algae: Adaptation strategies to survive on snow and ice. In Polyextremophiles, eds. J. Seckbach, A. Oren, and H. Stan-Lotter, 401–23. Dordrecht: Springer.
  • Lutz, S., A. M. Anesio, A. Edwards, and L. G. Benning. 2015. Microbial diversity on Icelandic glaciers and ice caps. Frontiers in Microbiology 6: 307. doi:10.3389/fmicb.2015.00307.
  • Lutz, S., A. M. Anesio, A. Edwards, and L. G. Benning. 2017. Linking microbial diversity and functionality of Arctic glacial surface habitats. Environmental Microbiology 19, no. 2: 551–65. doi:10.1111/1462-2920.13494.
  • Lutz, S., A. M. Anesio, K. Field, and L. G. Benning. 2015. Integrated ‘omics,’ targeted metabolite and single-cell analyses of Arctic snow algae functionality and adaptability. Frontiers in Microbiology 6: 1323. doi:10.3389/fmicb.2015.01323.
  • Lutz, S., A. M. Anesio, R. Raiswell, A. Edwards, R. J. Newton, F. Gill, and L. G. Benning. 2016. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nature Communications 7, no. 1: 1–9. doi:10.1038/ncomms11968.
  • McCabe, G. J., and A. G. Fountain. 2013. Glacier variability in the conterminous United States during the twentieth century. Climatic Change 116, no. 3: 565–77. doi:10.1007/s10584-012-0502-9.
  • McMurdie, P. J., and S. Holmes. 2013. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, no. 4: e61217. doi:10.1371/journal.pone.0061217.
  • Mikucki, J. A., and J. C. Priscu. 2007. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied and Environmental Microbiology 73, no. 12: 4029–39. doi:10.1128/AEM.01396-06.
  • Ming, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu. 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research 92, no. 1: 114–23. doi:10.1016/j.atmosres.2008.09.007.
  • Murakami, T., T. Segawa, D. Bodington, R. Dial, N. Takeuchi, S. Kohshima, and Y. Hongoh. 2015. Census of bacterial microbiota associated with the glacier ice worm Mesenchytraeus solifugus. FEMS Microbiology Ecology 91(3). doi:10.1093/femsec/fiv003
  • Musilova, M., M. Tranter, J. L. Bamber, N. Takeuchi, and A. M. Anesio. 2016. Experimental evidence that microbial activity lowers the albedo of glaciers. Geochemical Perspectives Letters 2: 106–16. doi:10.7185/geochemlet.1611.
  • Natural Resources Conservation Service. 2023. NWCC report generator, Schreibers Meadow station 21A10. National Water and Climate Center. Retrieved January 3, 2023, from https://wcc.sc.egov.usda.gov/reportGenerator/view/customSingleStationReport,metric/monthly/start_of_period/21A10:WA:SNOW%7Cid=%22%22%7Cname/2010-01-01,2023-01-03/WTEQ::collectionDate,WTEQ::value,WTEQ::median_1991,WTEQ::pctOfMedian_1991,SNWD::value,SNWD::median_1991,SNWD::pctOfMedian_1991?fitToScreen=false
  • Overbeek, R., R. Olson, G. D. Pusch, G. J. Olsen, J. J. Davis, T. Disz, S. Gerdes, B. Parrello, M. Shukla, V. Vonstein, and R. Stevens. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Research 42, no. D1: D206–D214. doi:10.1093/nar/gkt1226.
  • Pitkaranta, M., T. Meklin, A. Hyvarinen, L. Paulin, P. Auvinen, A. Nevalainen, and H. Rintala. 2008. Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Applied and Environmental Microbiology 74, no. 1: 233–44.
  • Procházková, L., T. Leya, H. Křížková, and L. Nedbalová. 2019. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology 95, no. 6: fiz064. doi:10.1093/femsec/fiz064.
  • Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2007. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35, no. suppl_1: D61–D65. doi:10.1093/nar/gkl842.
  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, F. O. Glöckner, and F. O. Glöckner. 2012. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41, no. D1: D590–D596. doi:10.1093/nar/gks1219.
  • R Core Team. 2021. R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Remias, D. 2012. Cell structure and physiology of alpine snow and ice algae. In Plants in alpine regions, ed. C. Lütz, 175–85. Vienna: Springer.
  • Remias, D., U. Lütz-Meindl, and C. Lütz. 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology 40, no. 3: 259–68. doi:10.1080/09670260500202148.
  • Remias, D., H. Wastian, C. Lütz, and T. Leya. 2013. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science 25, no. 5: 648–56. doi:10.1017/S0954102013000060.
  • Riedel, J. L., and M. A. Larrabee. 2016. Impact of recent glacial recession on summer streamflow in the Skagit River. Northwest Science 90, no. 1: 5–22. doi:10.3955/046.090.0103.
  • Rosa, K. A. 2016. One hundred years of vegetation succession in the Easton glacial foreland, Mount Baker, Washington. WWU Graduate School Collection. 506. https://cedar.wwu.edu/wwuet/506
  • Rosenberg, E. 2014. “The family Chitinophagaceae” in the prokaryotes, eds. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson. Heidelberg, Germany: Springer. 493–5.
  • Schuler, C. G., J. R. Havig, and T. L. Hamilton. 2017. Hot spring microbial community composition, morphology, and carbon fixation: Implications for interpreting the ancient rock record. Frontiers in Earth Science 5: 97. doi:10.3389/feart.2017.00097.
  • Simmons, D. R., A. E. Bonds, B. T. Castillo, R. A. Clemons, A. D. Glasco, J. M. Myers, N. Thapa, P.M. Letcher, M.J. Powell, J.E. Longcore, and T. Y. James. 2020. The Collection of Zoosporic Eufungi at the University of Michigan (CZEUM): Introducing a new repository of barcoded Chytridiomyceta and Blastocladiomycota cultures. IMA Fungus 11, no. 1: 1–22. doi:10.1186/s43008-020-00041-z.
  • Soto, D. F., R. Fuentes, P. Huovinen, and I. Gómez. 2020. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. Algal Research 45: 101738. doi:10.1016/j.algal.2019.101738.
  • Spijkerman, E., A. Wacker, G. Weithoff, and T. Leya. 2012. Elemental and fatty acid composition of snow algae in Arctic habitats. Frontiers in Microbiology 3: 380. doi:10.3389/fmicb.2012.00380.
  • Stibal, M., J. A. Bradley, A. Edwards, S. Hotaling, K. Zawierucha, J. Rosvold, S. Lutz, et al. 2020. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nature Ecology & Evolution 4, no. 5: 686–7. doi:10.1038/s41559-020-1163-0.
  • Stibal, M., J. Elster, M. Šabacká, and K. Kaštovská. 2007. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiology Ecology 59, no. 2: 265–73. doi:10.1111/j.1574-6941.2006.00264.x.
  • Stibal, M., M. Šabacká, and J. Žárský. 2012. Biological processes on glacier and ice sheet surfaces. Nature Geoscience 5, no. 11: 771–4. doi:10.1038/ngeo1611.
  • Takeuchi, N., R. Dial, S. Kohshima, T. Segawa, and J. Uetake. 2006. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophysical Research Letters 33(21). doi:10.1029/2006GL027819
  • Thomas, W. H. 1972. Observations on snow algae in California 1, 2. Journal of Phycology 8, no. 1: 1–9.
  • Thomas, W. H., and B. Duval. 1995. Sierra Nevada, California, USA, snow algae: Snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic and Alpine Research 27, no. 4: 389–99. doi:10.2307/1552032.
  • Westreich, S. T., M. L. Treiber, D. A. Mills, I. Korf, and D.G. Lemay. 2018. SAMSA2: A standalone metatranscriptome analysis pipeline. BMC Bioinformatics 19, no. 1: 175. doi:10.1186/s12859-018-2189-z.
  • Whelan, P., and A. J. Bach. 2017. Retreating glaciers, incipient soils, emerging forests: 100 years of landscape change on Mount Baker, Washington, USA. Annals of the American Association of Geographers 107, no. 2: 336–49. doi:10.1080/24694452.2016.1235480.
  • Wickham, M. H. 2016. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org.
  • Wick, R. R., L. M. Judd, and K. E. Holt. 2019. Performance of neural network basecalling tools for oxford nanopore sequencing. Genome Biology 20: 129. doi:10.1186/s13059-019-1727.
  • Wilhelm, L., G. A. Singer, C. Fasching, T. J. Battin, and K. Besemer. 2013. Microbial biodiversity in glacier-fed streams. The ISME Journal 7, no. 8: 1651–60. doi:10.1038/ismej.2013.44.
  • Williams, W. E., H. L. Gorton, and T. C. Vogelmann. 2003. Surface gas-exchange processes of snow algae. Proceedings of the National Academy of Sciences 100, no. 2: 562–6. doi:10.1073/pnas.0235560100.
  • Wilson, A. C., A. W. Nolin, and K. D. Bladon. 2021. Assessing the role of snow cover for post‐wildfire revegetation across the Pacific Northwest. Journal of Geophysical Research: Biogeosciences 126, no. 11: e2021JG006465.
  • Yakimovich, K. M., C. B. Engstrom, and L. M. Quarmby. 2020. Alpine snow algae microbiome diversity in the Coast Range of British Columbia. Frontiers in Microbiology 11: 1721. doi:10.3389/fmicb.2020.01721.
  • Zhang, L., F. Su, C. Zhang, F. Gong, and J. Liu. 2017. Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. International Journal of Molecular Sciences 18, no. 1: 33. doi:10.3390/ijms18010033.
  • Zhu, C., M. Miller, N. Lusskin, B. Bergk Pinto, L. Maccario, M. Häggblom, T. Vogel, C. Larose, and Y. Bromberg. 2020. Snow microbiome functional analyses reveal novel aspects of microbial metabolism of complex organic compounds. MicrobiologyOpen 9, no. 9: e1100. doi:10.1002/mbo3.1100.