715
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Permafrost development in northern Fennoscandian peatlands since the mid-Holocene

& ORCID Icon
Article: 2250035 | Received 20 Dec 2022, Accepted 09 Aug 2023, Published online: 26 Sep 2023

References

  • Åkerman, J., and M. Johansson. 2008. Thawing permafrost and thicker active layers in sub-Arctic Sweden. Permafrost and Periglacial Processes 19, no. 3: 279–17. doi:10.1002/ppp.626.
  • Alewell, C., R. Giesler, J. Klaminder, J. Leifeld, and M. Rollog. 2011. Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences 8: 1769–78. doi:10.5194/bg-8-1769-2011.
  • Birks, H. H. 2007. Plant macrofossil introduction. In Encyclopedia of Quaternary science, and S. A. Elias, vol. 3, 2266–88. Amsterdam: Elsevier.
  • Blaauw, M., and J. A. Christen. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, no. 3: 457–74. doi:10.1214/11-BA618.
  • Borge, A. F., S. Westermann, I. Solheim, and B. Etzelmüller. 2017. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. The Cryosphere 11, no. 1: 1–16. doi:10.5194/tc-11-1-2017.
  • Bronk Ramsey, C. 2021. OxCal version 4.4 (Computer program). University of Oxford Radiocarbon Accelerator Unit. https://c14.arch.ox.ac.uk/oxcal.html.
  • Conen, F., M. V. Yakutin, N. Carle, and C. Alewell. 2013. δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Communications in Mass Spectrometry 27, no. 10: 1101–4. doi:10.1002/rcm.6552.
  • d-maps.com. 2022. Scandinavian arctic. https://d-maps.com/pays.php?num_pay=3759&lang=en.
  • Geological Survey of Norway. 2020. Løsmassekart. Quaternary Deposit Map. https://www.ngu.no/emne/kvartærgeologiske-kart-løsmassekart.
  • Gisnås, K., B. Etzelmüller, C. Lussana, J. Hjort, A. B. K. Sannel, K. Isaksen, S. Westermann, et al. 2017. Permafrost map for Norway, Sweden and Finland. Permafrost and Periglacial Processes 28: 359–78. doi:10.1002/ppp.1922.
  • Grudd, H., K. R. Briffa, W. Karlén, T. S. Bartholin, P. D. Jones, and B. Kromer. 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: Natural climatic variability expressed on annual to millennial timescales. The Holocene 12, no. 6: 657–65. doi:10.1191/0959683602hl578rp.
  • Hallingbäck, T., N. Lönnell, H. Weibull, L. Hedenäs, and P. von Knorring. 2006. Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Sköldmossor – Blåmossor. Bryophyta: Anoectangium – Orthodontium. Uppsala: ArtDatabanken, SLU.
  • Hallingbäck, T., N. Lönnell, H. Weibull, L. Hedenäs, P. von Knorring, M. Korotynska, C. Reisborg, and M. Birgersson. 2008. Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Kompaktmossor – kapmossor. Bryophyta: Buxbaumia – Leucobryum. Uppsala: ArtDatabanken, SLU.
  • Hedenäs, L., C. Reisborg, and T. Hallingbäck. 2014. Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Skirmossor – baronmossor. Bryophyta: Hookeria – Anomodon. Uppsala: ArtDatabanken, SLU.
  • Holmquist, J. R., S. A. Finkelstein, M. Garneau, C. Massa, Z. Yu, and G. M. MacDonald. 2016. A comparison of radiocarbon ages derived from bulk peat and selected plant macrofossils in basal peat cores from circum-Arctic peatlands. Quaternary Geochronology 31: 53–61. doi:10.1016/j.quageo.2015.10.003.
  • Hugelius, G., J. Loisel, S. Chadburn, R. B. Jackson, M. C. Jones, G. MacDonald, M. Marushchak, et al. 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences 117, no. 34: 20438–46. doi:10.1073/pnas.1916387117.
  • Ivanova, N. V., I. L. Kuznetsova, I. S. Parmuzin, F. M. Rivkin, and V. A. Sorokovikov. 2011. Geocryological conditions in Swedish Lapland. Proceedings of the 4th Russian Conference on Geocryology, 7–9 June 2011, Moscow State University, 77–82, Moscow, Russia.
  • Johansson, M., J. Åkerman, F. Keuper, T. R. Christensen, H. Lantuit, and T. V. Callaghan. 2011. Past and present permafrost temperatures in the Abisko area: Redrilling of boreholes. Ambio 40, no. 6: 558–65. doi:10.1007/s13280-011-0163-3.
  • Juggins, S. 2014. C2 version 1.7.7. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne, UK: Newcastle University.
  • Kjellman, S. E., P. E. Axelsson, B. Etzelmüller, S. Westermann, and A. B. K. Sannel. 2018. Holocene development of subarctic permafrost peatlands in Finnmark, northern Norway. The Holocene 28: 1855–69. doi:10.1177/0959683618798126.
  • Kokfelt, U., N. Reuss, E. Struyf, M. Sonesson, M. Rundgren, G. Skog, P. Rosén, and D. Hammarlund. 2010. Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden. Journal of Paleolimnology 44, no. 1: 327–42. doi:10.1007/s10933-010-9406-8.
  • Krüger, J. P., F. Conen, J. Leifeld, and C. Alewell. 2017. Palsa uplift identified by stable isotope depth profiles and relation of δ15N to C/N ratio. Permafrost and Periglacial Processes 28: 485–92. doi:10.1002/ppp.1936.
  • Krüger, J. P., J. Leifeld, and C. Alewell. 2014. Degradation changes stable carbon isotope depth profiles in palsa peatlands. Biogeosciences 11: 3369–80. doi:10.5194/bg-11-3369-2014.
  • Kuhry, P., and D. H. Vitt. 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, no. 1: 271–5. doi:10.2307/2265676.
  • Laine, J., K. I. Flatberg, P. Harju, T. Timonen, A. Laine, E.-S. Tuittila, K. Minkkinen, and H. Vasander. 2018. Sphagnum mosses – The stars of European mires. Helsinki: University of Helsinki, Department of Forest Sciences.
  • Laine, J., P. Harju, T. Timonen, A. Laine, E.-S. Tuittila, K. Minkkinen, and H. Vasander. 2009. The intricate beauty of Sphagnum Mosses – A Finnish guide to identification. Helsinki: University of Helsinki, Department of Forest Ecology.
  • Lee, J.-Y., J. Marotzke, G. Bala, L. Cao, S. Corti, J. P. Dunne, F. Engelbrecht, et al. 2021. Future global climate: Scenario-based projections and near-term information. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, et al., 553–672. United Kingdom and New York: Cambridge University Press. doi:10.1017/9781009157896.006.
  • Loisel, J., Z. Yu, D. W. Beilman, P. Camill, J. Alm, M. J. Amesbury, D. Anderson, et al. 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 9: 1028–42. doi:10.1177/0959683614538073.
  • Lönnell, N., T. Hallingbäck, and C. Reisborg. 2019. Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Vitmossor – Knappnålsmossor. Bryophyta: Sphagnum – Tetrodontium. Uppsala: ArtDatabanken, SLU.
  • MacDonald, G. M., D. W. Beilman, K. V. Kremenetski, Y. Sheng, L. C. Smith, and A. A. Velichko. 2006. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314: 285–8. doi:10.1126/science.1131722.
  • Malmer, N., and B. Wallén. 1996. Peat formation and mass balance in subarctic ombrotrophic peatlands around Abisko, northern Scandinavia. Ecological Bulletins 45: 79–92.
  • Mauquoy, D., B. van Geel. 2007. Mire and peat macros. In Encyclopedia of Quaternary science, and S. A. Elias, vol. 3, 2315–36. Amsterdam: Elsevier.
  • Mossberg, B., L. Stenberg, and S. Ericsson. 1992. Den Nordiska Floran. Turnhout: Wahlström & Widstrand.
  • Mossberg, B., L. Stenberg, and S. Ericsson. 2008. Fjällflora. Värnamo: Wahlström & Widstrand.
  • Norwegian Centre for Climate Services. 2022. Observations and weather statistics. https://seklima.met.no/observations/.
  • Oksanen, P. O. 2006. Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas 35, no. 1: 81–95. doi:10.1080/03009480500359103.
  • Oksanen, P. O., P. Kuhry, and R. N. Alekseeva. 2001. Holocene development of the Rogovaya River peat plateau, European Russian Arctic. Holocene 11, no. 1: 25–40. doi:10.1191/095968301675477157.
  • Olefeldt, D., L. Heffernan, M. C. Jones, A. B. K. Sannel, C. C. Treat, and M. R. Turetsky. 2021. Permafrost thaw in northern peatlands: Rapid changes in ecosystem and landscape functions. In Ecosystem collapse and climate change, ed. J. G. Canadell and R. B. Jackson, 27–67. Switzerland: Springer Nature.
  • Olvmo, M., B. Holmer, S. Thorsson, H. Reese, and F. Lindberg. 2020. Sub-Arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Scientific Reports 10: 8937. doi:10.1038/s41598-020-65719-1.
  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Sannel, A. B. K. 2020. Ground temperature and snow depth variability within a subarctic peat plateau landscape. Permafrost and Periglacial Processes 31: 255–63. doi:10.1002/ppp.2045.
  • Sannel, A. B. K., L. Hempel, A. Kessler, and V. Prėskienis. 2018. Holocene development and permafrost history in sub-Arctic peatlands in Tavvavuoma, northern Sweden. Boreas 47: 454–68. doi:10.1111/bor.12276.
  • Sannel, A. B. K., G. Hugelius, P. Jansson, and P. Kuhry. 2016. Permafrost warming in a subarctic peatland – Which meteorological controls are most important? Permafrost and Periglacial Processes 27: 177–88. doi:10.1002/ppp.1862.
  • Sannel, A. B. K., and P. Kuhry. 2008. Long-term stability of permafrost in subarctic peat plateaus, west-central Canada. The Holocene 18, no. 4: 589–601. doi:10.1177/0959683608089658.
  • Sannel, A. B. K., and P. Kuhry. 2009. Holocene peat growth and decay dynamics in sub-Arctic peat plateaus, west-central Canada. Boreas 38: 13–24. doi:10.1111/j.1502-3885.2008.00048.x.
  • Sannel, A. B. K., and P. Kuhry. 2011. Warming-induced destabilization of peat plateau/thermokarst lake complexes. Journal of Geophysical Research – Biogeosciences 116: G03035. doi:10.1029/2010JG001635.
  • Schuur, E. A. G., R. Bracho, G. Celis, E. F. Belshe, C. Ebert, J. Ledman, M. Mauritz, et al. 2021. Tundra underlain by thawing permafrost persistently emits carbon to the atmosphere over 15 years of measurements. Journal of Geophysical Research – Biogeosciences 126. doi:10.1029/2020JG006044.
  • Schuur, E. A. G., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, et al. 2015. Climate change and the permafrost carbon feedback. Nature 520: 171–9. doi:10.1038/nature14338.
  • Seppä, H., A. E. Bjune, R. J. Telford, H. J. B. Birks, and S. Veski. 2009. Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past 5: 523–35. doi:10.5194/cp-5-523-2009.
  • Seppälä, M. 2011. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quaternary Research 75, no. 2: 366–70. doi:10.1016/j.yqres.2010.09.007.
  • Seppälä, M. 2005. Dating of palsas. In Quaternary studies in the northern and Arctic regions of Finland: Proceedings of the workshop organized within the Finnish national committee for quaternary research (INQUA), ed. A. E. K. Ojala (Special Paper 40, Kilpisjärvi Biological Research Station, Finland, 13–14 January), 79–84. Espoo: Geological Survey of Finland.
  • Stroeven, A. P., C. Hättestrand, J. Kleman, J. Heyman, D. Fabel, O. Fredin, B. W. Goodfellow, et al. 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147: 91–121.
  • Swedish Meteorological and Hydrological Institute. 2022. Data series with normal values for the period 1991–2020. https://www.smhi.se/data/meteorologi/dataserier-med-normalvarden-for-perioden-1991-2020-1.167775.
  • Treat, C. C., and M. C. Jones. 2018. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. The Holocene 28, no. 6: 998–1010. doi:10.1177/0959683617752858.
  • Treat, C. C., M. C. Jones, P. Camill, A. Gallego-Sala, M. Garneau, E. S. Klein, U. Kokfelt, et al. 2016. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research – Biogeosciences 121: 78–94. doi:10.1002/2015JG003061.
  • Turetsky, M. R., B. W. Abbott, M. C. Jones, K. Walter Anthony, D. Olefeldt, E. A. G. Schuur, G. Grosse, et al. 2020. Carbon release through abrupt permafrost thaw. Nature Geoscience 13: 138–43. doi:10.1038/s41561-019-0526-0.
  • Ulfstedt, A.-C. 1982. Geomorphological maps 32J Treriksröset, 32K Kummavuopio, 31J Rastojaure, 31K Naimakka – Description and assessment of areas of geomorphological importance. Rapport SNV pm 1555. Stockholm: Naturvårdsverket.
  • Väliranta, M., A. Kaakinen, and P. Kuhry. 2003. Holocene climate and landscape evolution east of the Pechora Delta, East-European Russian Arctic. Quaternary Research 59, no. 3: 335–44. doi:10.1016/S0033-5894(03)00041-3.
  • Vardy, S. R., B. G. Warner, J. Turunen, and R. Aravena. 2000. Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. The Holocene 10: 273–80. doi:10.1191/095968300671749538.
  • Vorren, K.-D. 1979. Recent palsa datings, a brief survey. Norsk Geografisk Tidsskrift 33, no. 4: 217–20. doi:10.1080/00291957908552057.
  • Yu, Z., J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37: L13402. doi:10.1029/2010GL043584.
  • Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics 43, no. 4: RG4002. doi:10.1029/2004RG000157.
  • Zoltai, S. C. 1993. Cyclic development of permafrost in the peatlands of Northwestern Alberta, Canada. Arctic and Alpine Research 25, no. 3: 240–6. doi:10.2307/1551820.
  • Zuidhoff, F., and E. Kolstrup. 2000. Changes in palsa distribution in relation to climate change in Laivadalen, Northern Sweden, especially 1960-1997. Permafrost and Periglacial Processes 11: 55–69. doi:10.1002/(SICI)1099-1530(200001/03)11:1<55::AID-PPP338>3.0.CO;2-T.