685
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Arctic sea ice and surface climate conditions in nine CMIP6 climate models

ORCID Icon, , , , &
Article: 2271592 | Received 08 May 2023, Accepted 10 Oct 2023, Published online: 05 Dec 2023

References

  • Aksenov, Y., E. E. Popova, A. Yool, A. J. G. Nurser, T. D. Williams, L. Bertino, and J. Bergh. 2017. On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Marine Policy 75: 300–17. doi:10.1016/j.marpol.2015.12.027.
  • Barnhart, K. R., I. Overeem, and R. S. Anderson. 2014. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, no. 5: 1777–99. doi:10.5194/tc-8-1777-2014.
  • Bieniek, P. A., L. Erikson, and J. Kasper. 2022. Atmospheric circulation drivers of extreme high water level events at Foggy Island Bay, Alaska. Atmosphere 13, no. 11: 1791. doi:10.3390/atmos13111791.
  • Bunzel, F., D. Notz, and L. T. Pedersen. 2018. Retrievals of Arctic sea-ice volume and its trend significantly affected by interannual snow variability. Geophysical Research Letters 45. 11,751– 11,759. doi:10.1029/2018GL078867.
  • Casas-Prat, M., and X. L. Wang. 2020. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves. Geophysical Research Letters 47, no. 15. doi:10.1029/2020GL088100.
  • Casas-Prat, M., X. L. Wang, and N. Swart. 2018. CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Modelling 123, no. January: 66–85. doi:10.1016/j.ocemod.2017.12.003.
  • Chen, J., S. Kang, C. Chen, Q. You, W. Du, M. Xu, X. Zhong, W. Zhang, and C. Jizu. 2020. Changes in sea ice and future accessibility along the Arctic Northeast Passage. Global and Planetary Change 195: 103319. doi:10.1016/j.gloplacha.2020.103319.
  • Chen, L., R. Wu, Q. Shu, C. Min, Q. Yang, and B. Han. 2023. The Arctic sea ice thickness change in CMIP6ʹs historical simulations. Advances in Atmospheric Sciences 40: 2331–43. doi:10.1007/s00376-022-1460-4.
  • Chevallier, M., G. C. Smith, F. Dupont, J.-F. Lemieux, G. Forget, Y. Fujii, F. Hernandez, R. Msadek, K. A. Peterson, and A. Storto. 2017. Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project. Climate Dynamics 49, no. 3: 1107–36. doi:10.1007/s00382-016-2985-y.
  • Davy, R., and S. Outten. 2020. The Arctic surface climate in CMIP6: Status and developments since CMIP5. Journal of Climate 33, no. 18: 8047–68. doi:10.1175/JCLI-D-19-0990.1.
  • Demchev, D. M., M. Y. Kulakov, A. P. Makshtas, I. A. Makhotina, K. V. Fil’chuk, and I. E. Frolov. 2020. Verification of ERA-Interim and ERA5 reanalyses data on surface air temperature in the Arctic. Russian Meteorology and Hydrology 45, no. 11: 771–7. doi:10.3103/S1068373920110035.
  • DeRepentigny, P., A. Jahn, M. M. Holland, and A. Smith. 2020a. Arctic sea ice in two configurations of the CESM2 during the 20th and 21st centuries. Journal of Geophysical Research: Oceans 125, no. 9: e2020JC016133. doi:10.1029/2020JC016133.
  • DeRepentigny, P., A. Jahn, L. B. Tremblay, R. Newton, and S. Pfirman. 2020b. Increased transnational sea ice transport between neighboring Arctic states in the 21st century. Earth’s Future 8, no. 3: e2019EF001284. doi:10.1029/2019EF001284.
  • Docquier, D., J. P. Grist, M. J. Roberts, C. D. Roberts, T. Semmler, L. Ponsoni, F. Massonnet, et al. 2019. Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport. Climate Dynamics 53, no. 7–8: 4989–5017. doi:10.1007/s00382-019-04840-y.
  • Docquier, D., and T. Koenigk. 2021. Observation-based selection of climate models projects Arctic ice-free summers around 2035. Communications Earth and Environment 2, no. 1: 1–8. doi:10.1038/s43247-021-00214-7.
  • Doscher, R., T. Vihma, and E. Maksimovich. 2014. Recent advances in understanding the Arctic climate system state and change from a sea ice perspective: A review. Atmospheric Chemistry and Physics 14, no. 24: 13571–600. doi:10.5194/acp-14-13571-2014.
  • Erikson, L. H., A. E. Gibbs, B. M. Richmond, C. D. Storlazzi, B. M. Jones, and K. Ohman. 2020. Changing storm conditions in response to projected 21st century climate change and the potential impact on an Arctic barrier island–lagoon system—A pilot study for Arey Island and Lagoon, eastern Arctic Alaska. US Geological Survey. doi:10.3133/ofr20201142.
  • Førland, E. J., T. E. Skaugen, R. E. Benestad, I. Hanssen-Bauer, and O. E. Tveito. 2004. Variations in thermal growing, heating, and freezing indices in the Nordic Arctic, 1900–2050. Arctic, Antarctic, and Alpine Research 36: 347–56. doi:10.1657/1523-0430(2004)036[0347:VITGHA]2.0.CO;2.
  • Frankcombe, L. M., M. H. England, J. B. Kajtar, M. E. Mann, and B. A. Steinman. 2018. On the choice of ensemble mean for estimating the forced signal in the presence of internal variability. Journal of Climate 31, no. 14: 5681–93. doi:10.1175/JCLI-D-17-0662.1.
  • Goosse, H., J. E. Kay, K. C. Armour, A. Bodas-Salcedo, H. Chepfer, D. Docquier, A. Jonko, et al. 2018. Quantifying climate feedbacks in polar regions. Nature Communications 9, no. 1. doi:10.1038/s41467-018-04173-0.
  • Graham, R. M., L. Cohen, N. Ritzhaupt, B. Segger, R. G. Graversen, A. Rinke, V. P. Walden, M. A. Granskog, and S. R. Hudson. 2019. Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. Journal of Climate 32, no. 14: 4121–43. doi:10.1175/JCLI-D-18-0643.1.
  • Haine, T. W. N., B. Curry, R. Gerdes, E. Hansen, M. Karcher, C. Lee, B. Rudels, et al. 2015. Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change 125: 13–35. doi:10.1016/j.gloplacha.2014.11.013.
  • Hamilton, S. G., L. Castro de la Guardia, A. E. Derocher, V. Sahanatien, B. Tremblay, and Huard, D. 2014. Projected polar bear sea ice habitat in the Canadian Arctic archipelago. PLOS ONE 9, no. 11: e113746. doi:10.1371/journal.pone.0113746.
  • Harsem, Ø., K. Heen, J. M. P. Rodrigues, and T. Vassdal. 2015. Oil exploration and sea ice projections in the Arctic. Polar Record 51, no. 1: 91–106. doi:10.1017/S0032247413000624.
  • Karlsson, J., and G. Svensson. 2013. Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophysical Research Letters 40, no. 16: 4374–9. doi:10.1002/grl.50768.
  • Knutti, R., J. Sedláček, B. M. Sanderson, R. Lorenz, E. M. Fischer, and V. Eyring. 2017. A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters 44, no. 4: 1909–18. doi:10.1002/2016GL072012.
  • Kwok, R. 2018. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environmental Research Letters 13(10): 105005. Institute of Physics Publishing. doi:10.1088/1748-9326/aae3ec.
  • Kwok, R., and G. F. Cunningham. 2015. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2045. doi:10.1098/rsta.2014.0157.
  • Kwok, R., G. Spreen, and S. Pang. 2013. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. Journal of Geophysical Research. Oceans 118, no. 5: 2408–25. doi:10.1002/jgrc.20191.
  • Laxon, S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R. Cullen, R. Kwok, et al. 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters 40, no. 4: 732–7. doi:10.1002/grl.50193.
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang. 2014. Evaluation of seven different atmospheric reanalysis products in the Arctic. Journal of Climate 27, no. 7: 2588–606. doi:10.1175/JCLI-D-13-00014.1.
  • Long, M., L. Zhang, S. Hu, and S. Qian. 2021. Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation. Journal of Climate 34, no. 4: 1515–29. doi:10.1175/JCLI-D-20-0522.1.
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery. 2007. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophysical Research Letters 34, no. 24. L24501-n/a. doi:10.1029/2007GL032043.
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve. 2017. NOAA/NSIDC climate data record of passive microwave sea ice concentration. Boulder, Colorado USA: National Snow and Ice Data Center. https://doi.org/10.7265/N59P2ZTG.
  • Meier, W. N., and J. S. Stewart. 2019. Assessing uncertainties in sea ice extent climate indicators. Environmental Research Letters 14, no. 3: 035005. doi:10.1088/1748-9326/aaf52c.
  • Melia, N., K. Haines, and E. Hawkins. 2016. Sea ice decline and 21st century trans‐Arctic shipping routes. Geophysical Research Letters 43, no. 18: 9720–8. doi:10.1002/2016GL069315.
  • Milinski, S., N. Maher, and D. Olonscheck. 2020. How large does a large ensemble need to be? Earth System Dynamics 11, no. 4: 885–901. doi:10.5194/esd-11-885-2020.
  • Mioduszewski, J., S. Vavrus, and M. Wang. 2018. Diminishing Arctic sea ice promotes stronger surface winds. Journal of Climate 31, no. 19: 8101–19. doi:10.1175/JCLI-D-18-0109.1.
  • Newton, R., S. Pfirman, L. B. Tremblay, and P. DeRepentigny. 2017. Increasing transnational sea-ice exchange in a changing Arctic Ocean. Earth’s Future 5, no. 6: 633–47. doi:10.1002/2016EF000500.
  • Notz, D., and SIMIP Community. 2020. Arctic sea ice in CMIP6. Geophysical Research Letters 47, no. 10. doi:10.1029/2019GL086749.
  • Olason, E., and D. Notz. 2014. Drivers of variability in Arctic sea-ice drift speed. Journal of Geophysical Research: Oceans119, no. 9: 5755–75. doi:10.1002/2014JC009897.
  • Overland, J. E. 2020. Less climatic resilience in the Arctic. Weather and Climate Extremes 30: 100275. doi:10.1016/j.wace.2020.100275.
  • Peng, G., W. N. Meier, D. J. Scott, and M. H. Savoie. 2013. A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth System Science Data 5, no. 2: 311–8. doi:10.5194/essd-5-311-2013.
  • Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas. 2017. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere 11, no. 4: 1607–23. doi:10.5194/tc-11-1607-2017.
  • Schweiger, A. J., R. Lindsay, J. Zhang, M. Steele, H. Stern, and R. Kwok. 2011. Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research: Oceans 116, no. 9: 1–21. doi:10.1029/2011JC007084.
  • Schweiger, A. J., M. Steele, J. Zhang, G. W. K. Moore, and K. L. Laidre. 2021. Accelerated sea ice loss in the Wandel Sea points to a change in the Arctic’s Last Ice Area. Communications Earth & Environment 2, no. 1: 1–12. doi:10.1038/s43247-021-00197-5.
  • Shen, Z., A. Duan, D. Li, and J. Li. 2021. Assessment and ranking of climate models in Arctic Sea ice cover simulation: From CMIP5 to CMIP6. Journal of Climate 34, no. 9: 3609–27. doi:10.1175/JCLI-D-20-0294.1.
  • Shu, Q., Q. Wang, Z. Song, F. Qiao, J. Zhao, M. Chu, and X. Li. 2020. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophysical Research Letters 47, no. 9. doi:10.1029/2020GL087965.
  • Sibul, G., and J. G. Jin. 2021. Evaluating the feasibility of combined use of the Northern Sea Route and the Suez Canal Route considering ice parameters. Transportation Research Part A: Policy and Practice 147, no. March: 350–69. doi:10.1016/j.tra.2021.03.024.
  • Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger. 2014. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere 8, no. 5: 1839–54. doi:10.5194/tc-8-1839-2014.
  • Stroeve, J., and D. Notz. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters 13(10): 103001. Institute of Physics Publishing. doi:10.1088/1748-9326/aade56.
  • Thomson, J., and W. E. Rogers. 2014. Swell and sea in the emerging Arctic Ocean. Geophysical Research Letters 41, no. 9: 3136–40. doi:10.1002/2014GL059983.
  • Timmermans, M. L., and J. Marshall. 2020. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. Journal of Geophysical Research: Oceans 125, no. 4: 1–35. doi:10.1029/2018JC014378.
  • Tschudi, M. A., J. C. Stroeve, and J. S. Stewart. 2016. Relating the age of Arctic Sea Ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing (Basel, Switzerland) 8, no. 6: 457. doi:10.3390/rs8060457.
  • Vavrus, S. J., and M. M. Holland. 2021. When will the Arctic Ocean become ice-free? Arctic, Antarctic, and Alpine Research 53: 217–8. doi:10.1080/15230430.2021.1941578.
  • Wang, C., R. M. Graham, K. Wang, S. Gerland, and M. A. Granskog. 2019. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. The Cryosphere 13, no. 6: 1661–79. doi:10.5194/tc-13-1661-2019.
  • Wang, X., J. Key, R. Kwok, and J. Zhang. 2016. Comparison of Arctic sea ice thickness from satellites, aircraft, and PIOMAS data. Remote Sensing 8, no. 9: 713. doi:10.3390/rs8090713.
  • Watts, M., W. Maslowski, Y. J. Lee, J. C. Kinney, and R. Osinski. 2021. A spatial evaluation of Arctic sea ice and regional limitations in CMIP6 historical simulations. Journal of Climate 34, no. 15: 6399–420. doi:10.1175/JCLI-D-20-0491.1.
  • Wei, T., Q. Yan, W. Qi, M. Ding, and C. Wang. 2020. Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environmental Research Letters 15, no. 10: 104079. doi:10.1088/1748-9326/abb2c8.
  • Williams, D. M., and L. H. Erikson. 2021. Knowledge gaps update to the 2019 IPCC special report on the ocean and cryosphere: Prospects to refine coastal flood hazard assessments and adaptation strategies with at-risk communities of Alaska. Frontiers in Climate 3, no. December: 1–11. doi:10.3389/fclim.2021.761439.
  • Wyburn-Powell, C., A. Jahn, and M. R. England. 2022. Modeled interannual variability of Arctic sea ice cover is within observational uncertainty. Journal of Climate 35, no. 20: 3227–42. doi:10.1175/JCLI-D-21-0958.1.
  • Zhang, J., and D. A. Rothrock. 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review 131, no. 5: 845–61. doi:10.1175/1520-0493(2003)131<0845:mgsiwa>2.0.CO;2.
  • Zhou, X., B. Wang, and F. Huang. 2022. Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean. Environmental Research Letters 17, no. 11: 114033. doi:10.1088/1748-9326/ac9d4d.