1,504
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methane emissions from subglacial meltwater of three alpine glaciers in Yukon, Canada

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2284456 | Received 11 Aug 2023, Accepted 13 Nov 2023, Published online: 12 Dec 2023

References

  • Agmuas Adnew, G., M. Schroll, S. E. Sapper, T. Röckmann, M. E. Popa, C. Juncher Jørgensen, F. Keppler, C. van der Veen, M. Sivan, T. Blunier, and J.R. Christiansen, eds. 2023. Constraining sources and sinks of subglacial methane from the Greenland Ice Sheet using clumped isotopes. EGU general assembly conference abstracts.
  • Bernard, B. B., J. M. Brooks, and W. M. Sackett. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters 31, no. 1: 48–13. doi:10.1016/0012-821X(76)90095-9.
  • Boyd, E. S., M. Skidmore, A. C. Mitchell, C. Bakermans, and J. W. Peters. 2010. Methanogenesis in subglacial sediments. Environmental Microbiology Reports 2, no. 5: 685–92. doi:10.1111/j.1758-2229.2010.00162.x.
  • Burns, R., P. M. Wynn, P. Barker, N. McNamara, S. Oakley, N. Ostle, A. W. Stott, et al. 2018. Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier. Scientific Reports 8, no. 1: 17118. doi:10.1038/s41598-018-35253-2.
  • Christiansen, J. R., and C. J. Jørgensen. 2018. First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland Ice Sheet. Scientific Reports 8, no. 1: 1–6. doi:10.1038/s41598-018-35054-7.
  • Christiansen, J. R., T. Röckmann, M. E. Popa, C. J. Sapart, and C. J. Jørgensen. 2021. Carbon emissions from the edge of the Greenland Ice Sheet reveal subglacial processes of methane and carbon dioxide turnover. Journal of Geophysical Research: Biogeosciences 126, no. 11: e2021JG006308.
  • Christner, B. C., G. G. Montross, and J. C. Priscu. 2012. Dissolved gases in frozen basal water from the NGRIP borehole: Implications for biogeochemical processes beneath the Greenland Ice Sheet. Polar Biology 35: 1735–41. doi:10.1007/s00300-012-1198-z.
  • Clarke, G. K., and G. Holdsworth 2002. Glaciers of the St. Elias Mountains. US Geological Survey professional paper, (1386J).
  • Clarke, G. K., J. P. Schmok, C. S. L. Ommanney, and S. G. Collins. 1986. Characteristics of surge‐type glaciers. Journal of Geophysical Research: Solid Earth 91, no. B7: 7165–80. doi:10.1029/JB091iB07p07165.
  • Coleman, D. D., J. B. Risatti, and M. Schoell. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochimica et Cosmochimica Acta 45, no. 7: 1033–7. doi:10.1016/0016-7037(81)90129-0.
  • Du, Z.-H., L. Wang, Z.-Q. Wei, J.-F. Liu, P.-L. Lin, J.-H. Lin, Y.-Z. Li, et al. 2022. CH4 and CO2 observations from a melting high mountain glacier, Laohugou Glacier No. 12. Advances in Climate Change Research 13, no. 1: 146–55. doi:10.1016/j.accre.2021.11.007.
  • Gill-Olivas, B., J. Telling, M. Skidmore, and M. Tranter. 2023. Abrasion of sedimentary rocks as a source of hydrogen peroxide and nutrients to subglacial ecosystems. Biogeosciences 20, no. 5: 929–43. doi:10.5194/bg-20-929-2023.
  • GLIMS Consortium. 2005. GLIMS glacier database, version 1. Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center.
  • Greule, M., S. G. Huber, and F. Keppler. 2012. Stable hydrogen-isotope analysis of methyl chloride emitted from heated halophytic plants. Atmospheric Environment 62: 584–92. doi:10.1016/j.atmosenv.2012.09.007.
  • Hawkings, J., J. Wadham, M. Tranter, J. Telling, E. Bagshaw, A. Beaton, S.-L. Simmons, et al. 2016. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles 30, no. 2: 191–210. doi:10.1002/2015GB005237.
  • Johnson, P. 1995. Ice‐dammed lake history, Dusty Glacier, St. Elias Mountains, Yukon. Canadian Geographer/Le Géographe Canadien 39, no. 3: 262–73. doi:10.1111/j.1541-0064.1995.tb00417.x.
  • Kleber, G. E., A. J. Hodson, L. Magerl, E. S. Mannerfelt, H. J. Bradbury, Y. Zhu, M. Trimmer, et al. 2023. Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic. Nature Geoscience 16, no. 7: 597–604. doi:10.1038/s41561-023-01210-6.
  • Kochtitzky, W., H. Jiskoot, L. Copland, E. Enderlin, R. McNabb, K. Kreutz, B. Main, et al. 2019. Terminus advance, kinematics and mass redistribution during eight surges of Donjek Glacier, St. Elias Range, Canada, 1935 to 2016. Journal of Glaciology 65, no. 252: 565–79. doi:10.1017/jog.2019.34.
  • Konya, K., G. Iwahana, T. Sueyoshi, T. Morishita, and T. Abe. 2022. Methane flux around the Gulkana Glacier terminus, Alaska summer 2019. Polar Data Journal 6: 32–42. doi:10.20575/00000040.
  • Lamarche-Gagnon, G., J. L. Wadham, B. Sherwood Lollar, S. Arndt, P. Fietzek, A. D. Beaton, A. J. Tedstone, et al. 2019. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, no. 7737: 73–7. doi:10.1038/s41586-018-0800-0.
  • Lindbäck, K., R. Pettersson, A. L. Hubbard, S. H. Doyle, D. van As, A. B. Mikkelsen, A. A. Fitzpatrick, et al. 2015. Subglacial water drainage, storage, and piracy beneath the Greenland Ice Sheet. Geophysical Research Letters 42, no. 18: 7606–14. doi:10.1002/2015GL065393.
  • Main, B., L. Copland, S. V. Samsonov, C. F. Dow, G. E. Flowers, E. Young, W.H. Kochtitzky eds. 2019. Surge of Little Kluane Glacier in the St. Elias Mountains, Yukon, Canada, from 2017-2018. AGU Fall Meeting Abstracts.
  • Michaud, A. B., J. E. Dore, A. M. Achberger, B. C. Christner, A. C. Mitchell, M. L. Skidmore, T. J. Vick-Majors, et al. 2017. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nature Geoscience 10, no. 8: 582–6. doi:10.1038/ngeo2992.
  • Millan, R., J. Mouginot, A. Rabatel, and M. Morlighem. 2022. Ice velocity and thickness of the world’s glaciers. Nature Geoscience 15, no. 2: 124–9. doi:10.1038/s41561-021-00885-z.
  • Murray, T., T. Strozzi, A. Luckman, H. Jiskoot, and P. Christakos. 2003. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. Journal of Geophysical Research: Solid Earth 108, no. B5. doi:10.1029/2002JB001906.
  • National Centers for Environmental Information. 2022. ETOPO 2022 15 arc-second global relief model.
  • Pain, A. J., J. B. Martin, E. E. Martin, Å. K. Rennermalm, and S. Rahman. 2021. Heterogeneous CO2 and CH4 content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes. The Cryosphere 15, no. 3: 1627–44. doi:10.5194/tc-15-1627-2021.
  • Paul, D., G. Skrzypek, and I. Fórizs. 2007. Normalization of measured stable isotopic compositions to isotope reference scales–a review. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 21, no. 18: 3006–14. doi:10.1002/rcm.3185.
  • Portnov, A., S. Vadakkepuliyambatta, J. Mienert, and A. Hubbard. 2016. Ice-sheet-driven methane storage and release in the Arctic. Nature Communications 7, no. 1: 10314. doi:10.1038/ncomms10314.
  • Rounds, S. A. 2012. Alkalinity and acid neutralizing capacity (ver. 4.0, September 2012). U.S. Geological Survey Techniques of Water-Resources Investigations, 09-A6.6. doi:10.3133/twri09A6.6.
  • Samsonov, S., K. Tiampo, and R. Cassotto. 2021. Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow. The Cryosphere 15, no. 9: 4221–39. doi:10.5194/tc-15-4221-2021.
  • Sevestre, H., and D. I. Benn. 2015. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. Journal of Glaciology 61, no. 228: 646–62. doi:10.3189/2015JoG14J136.
  • Skidmore, M. L., J. M. Foght, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Applied and Environmental Microbiology 66, no. 8: 3214–20. doi:10.1128/AEM.66.8.3214-3220.2000.
  • Slatt, R. M. 1972. Geochemistry of meltwater streams from nine Alaskan glaciers. Geological Society of America Bulletin 83, no. 4: 1125–32. doi:10.1130/0016-7606(1972)83[1125:GOMSFN]2.0.CO;2.
  • Stibal, M., J. L. Wadham, G. P. Lis, J. Telling, R. D. Pancost, A. Dubnick, M. J. Sharp, et al. 2012. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biology 18, no. 11: 3332–45. doi:10.1111/j.1365-2486.2012.02763.x.
  • St. Pierre, K. A., V. L. St. Louis, S. L. Schiff, I. Lehnherr, P. G. Dainard, A. S. Gardner, P. J. K. Aukes, et al. 2019. Proglacial freshwaters are significant and previously unrecognized sinks of atmospheric CO2. Proceedings of the National Academy of Sciences 116, no. 36: 17690–5. doi:10.1073/pnas.1904241116.
  • Vachon, R., P. Schmidt, B. Lund, A. Plaza‐Faverola, H. Patton, and A. Hubbard. 2022. Glacially induced stress across the Arctic from the Eemian Interglacial to the present—Implications for faulting and methane seepage. Journal of Geophysical Research: Solid Earth 127, no. 7: e2022JB024272.
  • Wadham, J. L., S. Arndt, S. Tulaczyk, M. Stibal, M. Tranter, J. Telling, G. P. Lis, et al. 2012. Potential methane reservoirs beneath Antarctica. Nature 488, no. 7413: 633–7. doi:10.1038/nature11374.
  • Wadham, J. L., J. R. Hawkings, L. Tarasov, L. J. Gregoire, R. G. M. Spencer, M. Gutjahr, A. Ridgwell, et al. 2019. Ice sheets matter for the global carbon cycle. Nature Communications 10, no. 1: 3567. doi:10.1038/s41467-019-11394-4.
  • Wadham, J. L., M. Tranter, S. Tulaczyk, and M. Sharp. 2008. Subglacial methanogenesis: A potential climatic amplifier? Global Biogeochemical Cycles 22, no. 2. doi:10.1029/2007GB002951.
  • Wang, D. T., P. V. Welander, and S. Ono. 2016. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath). Geochimica et Cosmochimica Acta 192: 186–202. doi:10.1016/j.gca.2016.07.031.
  • Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry 2, no. 3: 203–15. doi:10.1016/0304-4203(74)90015-2.
  • Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161, no. 1–3: 291–314. doi:10.1016/S0009-2541(99)00092-3.
  • Young, E. M., G. E. Flowers, H. Jiskoot, and H. D. Gibson. 2022. Kinematic evolution of kilometre-scale fold trains in surge-type glaciers explored with a numerical model. Journal of Structural Geology 161: 104644. doi:10.1016/j.jsg.2022.104644.
  • Yukon Geological Survey. 2020. A digital atlas of terranes for the northern Cordillera. http://www.geology.gov.yk.ca/.
  • Yukon Geological Survey. 2022. Yukon digital bedrock geology. https://data.geology.gov.yk.ca/Compilation/3