716
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Implications of alder shrub growth for alpine tundra soil properties in Interior Alaska

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2285334 | Received 28 Apr 2023, Accepted 10 Nov 2023, Published online: 20 Dec 2023

References

  • Aguirre, D., A. E. Benhumea, and J. R. McLaren. 2021. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology and Biochemistry 153: 108121. doi:10.1016/j.soilbio.2020.108121.
  • Alaska Fire Service (AFS) Alaska Wildland Fire Information Map Series. n.d. Accessed December 13, 2023. https://www.arcgis.com/apps/webappviewer/index.html?id=4a083628f8f94a4290fd502e43551f73.
  • Andruko, R., R. Danby, and P. Grogan. 2020. Recent growth and expansion of birch shrubs across a low arctic landscape in continental Canada: Are these responses more a consequence of the severely declining caribou herd than of climate warming? Ecosystems 23, no. 7: 1362–14. doi:10.1007/s10021-019-00474-7.
  • Barrere, M., F. Domine, M. Belke-Brea, and D. Sarrazin. 2018. Snowmelt events in autumn can reduce or cancel the soil warming effect of snow–vegetation interactions in the Arctic. Journal of Climate 31, no. 23: 9507–18. doi:10.1175/JCLI-D-18-0135.1.
  • Bartoń, K. (2023). MuMIn: Multi-model inference. https://CRAN.R-project.org/package=MuMIn.
  • Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, no. 1: 1–48. doi:10.18637/jss.v067.i01.
  • Beck, P. S. A., and S. J. Goetz. 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environmental Research Letters 6, no. 4: 045501. doi:10.1088/1748-9326/6/4/045501.
  • Beck, P. S. A., S. J. Goetz, M. C. Mack, H. D. Alexander, Y. Jin, J. T. Randerson, and M. M. Loranty. 2011. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Global Change Biology 17, no. 9: 2853–66. doi:10.1111/j.1365-2486.2011.02412.x.
  • Berner, L. T., H. D. Alexander, M. M. Loranty, P. Ganzlin, M. C. Mack, S. P. Davydov, and S. J. Goetz. 2015. Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology and Management 337: 110–18. doi:10.1016/j.foreco.2014.10.027.
  • Berner, L. T., P. S. A. Beck, A. G. Bunn, and S. J. Goetz. 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology 19, no. 11: 3449–62. doi:10.1111/gcb.12304.
  • Berner, L. T., R. Massey, P. Jantz, B. C. Forbes, M. Macias-Fauria, I. Myers-Smith, T. Kumpula, et al. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, no. 1: 4621. doi:10.1038/s41467-020-18479-5.
  • Blok, D., M. M. P. D. Heijmans, G. Schaepman‐Strub, A. V. Kononov, T. C. Maximov, and F. Berendse. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology 16, no. 4: 1296–305. doi:10.1111/j.1365-2486.2009.02110.x.
  • Boelman, N. T., L. Gough, J. R. McLaren, and H. Greaves. 2011. Does NDVI reflect variation in the structural attributes associated with increasing shrub dominance in Arctic tundra? Environmental Research Letters 6, no. 3: 035501. doi:10.1088/1748-9326/6/3/035501.
  • Boelman, N. T., M. Stieglitz, H. M. Rueth, M. Sommerkorn, K. L. Griffin, G. R. Shaver, and J. A. Gamon. 2003. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 135, no. 3: 414–21. doi:10.1007/s00442-003-1198-3.
  • Bolker, B. & R Development Core Team. (2022). bbmle: Tools for general maximum likelihood estimation. https://CRAN.R-project.org/package=bbmle
  • Bret-Harte, M. S., M. C. Mack, G. R. Shaver, D. C. Huebner, M. Johnston, C. A. Mojica, C. Pizano, and J. A. Reiskind. 2013. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1624: 20120490. doi:10.1098/rstb.2012.0490.
  • Bronaugh, D., & Consortium, A. W. for the P. C. I. (2019). zyp: Zhang + Yue-pilon trends package. https://CRAN.R-project.org/package=zyp
  • Cahoon, S. M. P., P. F. Sullivan, E. Post, and J. M. Welker. 2012. Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland. Global Change Biology 18, no. 2: 469–79. doi:10.1111/j.1365-2486.2011.02528.x.
  • Chapin, F. S., M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key, A. H. Lloyd, A. D. McGuire, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310, no. 5748: 657–60. doi:10.1126/science.1117368.
  • Chen, Y., F. S. Hu, and M. J. Lara. 2021. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems. Global Change Biology 27, no. 3: 652–63. doi:10.1111/gcb.15451.
  • Christie, K. S., J. P. Bryant, L. Gough, V. T. Ravolainen, R. W. Ruess, and K. D. Tape. 2015. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: A synthesis. BioScience 65, no. 12: 1123–33. doi:10.1093/biosci/biv137.
  • Cornelissen, J. H. C., T. V. Callaghan, J. M. Alatalo, A. Michelsen, E. Graglia, A. E. Hartley, D. S. Hik, et al. 2001. Global change and Arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? Journal of Ecology 89, no. 6: 984–94. doi:10.1111/j.1365-2745.2001.00625.x.
  • Cunliffe, A. M., J. J. Assmann, G. N. Daskalova, J. T. Kerby, and I. H. Myers-Smith. 2020. Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environmental Research Letters 15, no. 12: 125004. doi:10.1088/1748-9326/aba470.
  • Drew, J. W., M. S. Bret-Harte, A. Buchwal, and C. Heslop. 2023. Age matters: Older alnus viridis ssp. fruticosa are more sensitive to summer temperatures in the Alaskan Arctic. Functional Ecology 37, no. 5: 1463–75. doi:10.1111/1365-2435.14307.
  • Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, A. D. Bjorkman, T. V. Callaghan, L. S. Collier, et al. 2012. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15, no. 2: 164–75. doi:10.1111/j.1461-0248.2011.01716.x.
  • Filella, I., J. Peñuelas, L. Llorens, and M. Estiarte. 2004. Reflectance assessment of seasonal and annual changes in biomass and CO2 uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment 90, no. 3: 308–18. doi:10.1016/j.rse.2004.01.010.
  • Fisher, J. P., C. Estop-Aragonés, A. Thierry, D. J. Charman, S. A. Wolfe, I. P. Hartley, J. B. Murton, M. Williams, and G. K. Phoenix. 2016. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Global Change Biology 22, no. 9: 3127–40. doi:10.1111/gcb.13248.
  • Fox, J., and S. Weisberg. 2019. An R companion to applied regression. 3rd ed. Thousand Oaks, CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
  • Franche, C., K. Lindström, and C. Elmerich. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil 321, no. 1: 35–59. doi:10.1007/s11104-008-9833-8.
  • Fraser, R. H., T. C. Lantz, I. Olthof, S. V. Kokelj, and R. A. Sims. 2014. Warming-induced shrub expansion and lichen decline in the western Canadian Arctic. Ecosystems 17, no. 7: 1151–68. doi:10.1007/s10021-014-9783-3.
  • Frost, G. V., and H. E. Epstein. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology 20, no. 4: 1264–77. doi:10.1111/gcb.12406.
  • Frost, G. V., H. E. Epstein, D. A. Walker, G. Matyshak, and K. Ermokhina. 2013. Patterned-ground facilitates shrub expansion in Low Arctic tundra. Environmental Research Letters 8, no. 1: 015035. doi:10.1088/1748-9326/8/1/015035.
  • Gamon, J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, G. Joel, J. Penuelas, and R. Valentini. 1995. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications 5, no. 1: 28–41. doi:10.2307/1942049.
  • Giglio, L., L. Boschetti, D. P. Roy, M. L. Humber, and C. O. Justice. 2018. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment 217: 72–85. doi:10.1016/j.rse.2018.08.005.
  • Göckede, M., F. Kittler, M. J. Kwon, I. Burjack, M. Heimann, O. Kolle, N. Zimov, and S. Zimov. 2017. Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure. The Cryosphere 11, no. 6: 2975–96. doi:10.5194/tc-11-2975-2017.
  • Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18–27. doi:10.1016/j.rse.2017.06.031.
  • Guay, K. C., P. S. A. Beck, L. T. Berner, S. J. Goetz, A. Baccini, and W. Buermann. 2014. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Global Change Biology 20, no. 10: 3147–58. doi:10.1111/gcb.12647.
  • Hart, S. C., D. Binkley, and D. A. Perry. 1997. Influence of red alder on soil nitrogen transformations in two conifer forests of contrasting productivity. Soil Biology and Biochemistry 29, no. 7: 1111–23. doi:10.1016/S0038-0717(97)00004-7.
  • Heijmans, M. M. P. D., R. Í. Magnússon, M. J. Lara, G. V. Frost, I. H. Myers-Smith, J. van Huissteden, M. T. Jorgenson, et al. 2022. Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment 3, no. 1: Article 1. doi:10.1038/s43017-021-00233-0.
  • Heim, R. J., A. Bucharova, L. Brodt, J. Kamp, D. Rieker, A. V. Soromotin, A. Yurtaev, and N. Hölzel. 2021. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years. Science of the Total Environment 760: 143425. doi:10.1016/j.scitotenv.2020.143425.
  • Heslop, C. B., R. W. Ruess, K. Kielland, and M. S. Bret-Harte. 2021. Soil enzymes illustrate the effects of alder nitrogen fixation on soil carbon processes in Arctic and boreal ecosystems. Ecosphere 12, no. 11: e03818. doi:10.1002/ecs2.3818.
  • Hewitt, R. E., E. Bent, T. N. Hollingsworth, F. S. Chapin, and D. L. Taylor. 2013. Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience 3, no. 20: 296–310. doi:10.2980/20-3-3620.
  • Hewitt, R. E., F. S. Chapin III, T. N. Hollingsworth, and D. L. Taylor. 2017. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska Arctic treeline. Molecular Ecology 26, no. 14: 3826–38. doi:10.1111/mec.14143.
  • Hobbie, S. E., J. P. Schimel, S. E. Trumbore, and J. R. Randerson. 2000. Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6, no. S1: 196–210. doi:10.1046/j.1365-2486.2000.06021.x.
  • Holmes, R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Loveland, CO: Tree-Ring Society.
  • Huebner, D. C., A. Buchwal, and M. S. Bret-Harte. 2022. Retrogressive thaw slumps in the Alaskan Low Arctic may influence tundra shrub growth more strongly than climate. Ecosphere 13, no. 6: e4106. doi:10.1002/ecs2.4106.
  • Hu, F. S., P. E. Higuera, J. E. Walsh, W. L. Chapman, P. A. Duffy, L. B. Brubaker, and M. L. Chipman. 2010. Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences 115, no. G4. doi: 10.1029/2009JG001270.
  • Jackson, R. B., J. L. Banner, E. G. Jobbágy, W. T. Pockman, and D. H. Wall. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, no. 6898: Article 6898. doi:10.1038/nature00910.
  • Jafarov, E. E., E. T. Coon, D. R. Harp, C. J. Wilson, S. L. Painter, A. L. Atchley, and V. E. Romanovsky. 2018. Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environmental Research Letters 13, no. 10: 105006. doi:10.1088/1748-9326/aadd30.
  • Jespersen, R. G., A. J. Leffler, S. F. Oberbauer, and J. M. Welker. 2018. Arctic plant ecophysiology and water source utilization in response to altered snow: Isotopic (δ18O and δ2H) evidence for meltwater subsidies to deciduous shrubs. Oecologia 187, no. 4: 1009–23. doi:10.1007/s00442-018-4196-1.
  • Johnstone, J. F., F. S. Chapin III, J. Foote, S. Kemmett, K. Price, and L. Viereck. 2004. Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research 34, no. 2: 267–73. doi:10.1139/x03-183.
  • Johnstone, J. F., T. N. Hollingsworth, F. S. Chapin III, and M. C. Mack. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology 16, no. 4: 1281–95. doi:10.1111/j.1365-2486.2009.02051.x.
  • Jorgenson, M. T., V. Romanovsky, J. Harden, Y. Shur, J. O. O’Donnell, E. A. G. Schuur, M. Kanevskiy, and S. Marchenko. 2010. Resilience and vulnerability of permafrost to climate change. Canadian Journal of Forest Research. doi: 10.1139/X10-060.
  • Kasischke, E. S., and M. R. Turetsky. 2006. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters 33, no. 9. doi: 10.1029/2006GL025677.
  • Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu. 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences 110, no. 32: 13055–60. doi:10.1073/pnas.1305069110.
  • Kropp, H., M. M. Loranty, S. M. Natali, A. L. Kholodov, A. V. Rocha, I. Myers-Smith, B. W. Abbot, et al. 2020. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters 16, no. 1: 015001. doi:10.1088/1748-9326/abc994.
  • Lantz, T. C., S. E. Gergel, and G. H. R. Henry. 2010. Response of green alder (Alnus viridis subsp. Fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada. Journal of Biogeography 37, no. 8: 1597–610. doi:10.1111/j.1365-2699.2010.02317.x.
  • Lantz, T. C., P. Marsh, and S. V. Kokelj. 2013. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16, no. 1: 47–59. doi:10.1007/s10021-012-9595-2.
  • Lawrence, D. M., and S. C. Swenson. 2011. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environmental Research Letters 6, no. 4: 045504. doi:10.1088/1748-9326/6/4/045504.
  • Liu, Y., W. J. Riley, T. F. Keenan, Z. A. Mekonnen, J. A. Holm, Q. Zhu, and M. S. Torn. 2022. Dispersal and fire limit Arctic shrub expansion. Nature Communications 13, no. 1: Article 1. doi:10.1038/s41467-022-31597-6.
  • Loranty, M. M., B. W. Abbott, D. Blok, T. A. Douglas, H. E. Epstein, B. C. Forbes, B. M. Jones, et al. 2018. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, no. 17: 5287–313. doi:10.5194/bg-15-5287-2018.
  • Lynch, L. M., M. B. Machmuller, M. F. Cotrufo, E. A. Paul, and M. D. Wallenstein. 2018. Tracking the fate of fresh carbon in the Arctic tundra: Will shrub expansion alter responses of soil organic matter to warming? Soil Biology and Biochemistry 120: 134–44. doi:10.1016/j.soilbio.2018.02.002.
  • Mackay, J. R. 1977. Probing for the bottom of the active layer. Geological Survey of Canada Paper 77: 327–8.
  • Martin, A. C., E. S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias-Fauria. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environmental Research Letters 12, no. 8: 085007. doi:10.1088/1748-9326/aa7989.
  • Matyshak, G. V., O. Goncharova, Yu, N. G. Moskalenko, D. A. Walker, H. E. Epstein, and Y. Shur. 2017. Contrasting Soil thermal regimes in the forest-tundra transition near Nadym, West Siberia, Russia. Permafrost and Periglacial Processes 28, no. 1: 108–18. doi:10.1002/ppp.1882.
  • Mekonnen, Z. A., W. J. Riley, L. T. Berner, N. J. Bouskill, M. S. Torn, G. Iwahana, A. L. Breen, et al. 2021. Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters 16, no. 5: 053001. doi:10.1088/1748-9326/abf28b.
  • Mekonnen, Z. A., W. J. Riley, and R. F. Grant. 2018. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic Tundra. Journal of Geophysical Research: Biogeosciences 123, no. 5: 1683–701. doi:10.1029/2017JG004319.
  • Melvin, T. M., and K. R. Briffa. 2014. CRUST: Software for the implementation of regional chronology standardisation: Part 2. Further RCS options and recommendations. Dendrochronologia 32, no. 4: 343–56. doi:10.1016/j.dendro.2014.07.008.
  • Miner, K. R., M. R. Turetsky, E. Malina, A. Bartsch, J. Tamminen, A. D. McGuire, A. Fix, C. Sweeney, C. D. Elder, and C. E. Miller. 2022. Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment 3, no. 1: Article 1. doi:10.1038/s43017-021-00230-3.
  • Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, et al. 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6, no. 4: 045509. doi:10.1088/1748-9326/6/4/045509.
  • Myers-Smith, I. H., J. T. Kerby, G. K. Phoenix, J. W. Bjerke, H. E. Epstein, J. J. Assmann, C. John, et al. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10, no. 2: Article 2. doi:10.1038/s41558-019-0688-1.
  • Nakagawa, S., and H. Schielzeth. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4, no. 2: 133–42. doi:10.1111/j.2041-210x.2012.00261.x.
  • Nalder, I. A., and R. W. Wein. 1998. A new forest floor corer for rapid sampling, minimal disturbance and adequate precision. Silva Fennica 32: 373–82. doi:10.14214/sf.678.
  • Nauta, A. L., M. M. P. D. Heijmans, D. Blok, J. Limpens, B. Elberling, A. Gallagher, B. Li, et al. 2015. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change 5, no. 1: Article 1. doi:10.1038/nclimate2446.
  • Nehrbass-Ahles, C., F. Babst, S. Klesse, M. Nötzli, O. Bouriaud, R. Neukom, M. Dobbertin, and D. Frank. 2014. The influence of sampling design on tree-ring-based quantification of forest growth. Global Change Biology 20, no. 9: 2867–85. doi:10.1111/gcb.12599.
  • Odebiri, O., J. Odindi, and O. Mutanga. 2021. Basic and deep learning models in remote sensing of soil organic carbon estimation: A brief review. International Journal of Applied Earth Observation and Geoinformation 102: 102389. doi:10.1016/j.jag.2021.102389.
  • O’Donnell, J. A., V. E. Romanovsky, J. W. Harden, and A. D. McGuire. 2009. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in Interior Alaska. Soil Science 174, no. 12: 646. doi:10.1097/SS.0b013e3181c4a7f8.
  • Olofsson, J., L. Oksanen, T. Callaghan, P. E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15, no. 11: 2681–93. doi:10.1111/j.1365-2486.2009.01935.x.
  • Pajunen, A. M., J. Oksanen, and R. Virtanen. 2011. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. Journal of Vegetation Science 22, no. 5: 837–46. doi:10.1111/j.1654-1103.2011.01285.x.
  • Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3, no. 7: 673–7. doi:10.1038/nclimate1858.
  • Pérez, J., A. Basaguren, N. López-Rojo, A. M. Tonin, F. Correa-Araneda, L. Boyero. 2021. The role of key plant species on litter decomposition in streams: Alder as experimental model. In The ecology of plant litter decomposition in stream ecosystems, ed. C. M. Swan, L. Boyero, and C. Canhoto, 143–61. Cham: Springer International Publishing. doi: 10.1007/978-3-030-72854-0_8.
  • Plante, S., E. Champagne, P. Ropars, S. Boudreau, E. Lévesque, B. Tremblay, and J.-P. Tremblay. 2014. Shrub cover in northern Nunavik: Can herbivores limit shrub expansion? Polar Biology 37, no. 5: 611–9. doi:10.1007/s00300-014-1461-6.
  • Racine, C., R. Jandt, C. Meyers, and J. Dennis. 2004. Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research 36, no. 1: 1–10. doi:10.1657/1523-0430(2004)036[0001:TFAVCA]2.0.CO;2.
  • R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
  • R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
  • Rhoades, C., H. Oskarsson, D. Binkley, and B. Stottlemyer. 2001. Alder (Alnus crispa) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska. Écoscience 8, no. 1: 89–95. doi:10.1080/11956860.2001.11682634.
  • Riedel, S. M., H. E. Epstein, and D. A. Walker. 2005. Biotic controls over spectral reflectance of Arctic tundra vegetation. International Journal of Remote Sensing 26, no. 11: 2391–405. doi:10.1080/01431160512331337754.
  • Salmon, V. G., A. L. Breen, J. Kumar, M. J. Lara, P. E. Thornton, S. D. Wullschleger, and C. M. Iversen. 2019. Alder distribution and expansion across a tundra hillslope: Implications for local N cycling. Frontiers in Plant Science 10: 1099. doi:10.3389/fpls.2019.01099.
  • Shevtsova, I., B. Heim, S. Kruse, J. Schröder, E. I. Troeva, L. A. Pestryakova, E. S. Zakharov, and U. Herzschuh. 2020. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environmental Research Letters 15, no. 8: 085006. doi:10.1088/1748-9326/ab9059.
  • Shur, Y. L., and M. T. Jorgenson. 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes 18, no. 1: 7–19. doi:10.1002/ppp.582.
  • Street, L. E., J.-A. Subke, R. Baxter, K. J. Dinsmore, C. Knoblauch, and P. A. Wookey. 2018. Ecosystem carbon dynamics differ between tundra shrub types in the western Canadian Arctic. Environmental Research Letters 13, no. 8: 084014. doi:10.1088/1748-9326/aad363.
  • Sturm, M., J. Holmgren, J. P. McFadden, G. E. Liston, F. S. Chapin, and C. H. Racine. 2001. Snow–shrub interactions in Arctic tundra: A hypothesis with climatic implications. Journal of Climate 14, no. 3: 336–44. doi:10.1175/1520-0442(2001)014<0336:ssiiat>2.0.CO;2.
  • Sturm, M., J. Schimel, G. Michaelson, J. M. Welker, S. F. Oberbauer, G. E. Liston, J. Fahnestock, and V. E. Romanovsky. 2005. Winter biological processes could help convert Arctic tundra to shrubland. BioScience 55, no. 1: 17–26. doi:10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2.
  • Tape, K. D., M. Hallinger, J. M. Welker, and R. W. Ruess. 2012. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, no. 5: 711–24. doi:10.1007/s10021-012-9540-4.
  • Tape, K. D., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology 12, no. 4: 686–702. doi:10.1111/j.1365-2486.2006.01128.x.
  • Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23, no. 2. doi: 10.1029/2008GB003327.
  • Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, no. 3: 1717–36. doi:10.5194/bg-10-1717-2013.
  • Turetsky, M. R., B. Bond-Lamberty, E. Euskirchen, J. Talbot, S. Frolking, A. D. McGuire, and E.-S. Tuittila. 2012. The resilience and functional role of moss in boreal and Arctic ecosystems. New Phytologist 196, no. 1: 49–67. doi:10.1111/j.1469-8137.2012.04254.x.
  • U.S. Census Bureau. 2022. TIGER/Line Shapefiles [machine-readable data files] and technical documentation. http://www.census.gov/geo/maps-data/data/tiger-line.html.
  • Vankoughnett, M. R., and P. Grogan. 2016. Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: The influence of snow and litter. Plant and Soil 408, no. 1: 195–210. doi:10.1007/s11104-016-2921-2.
  • van Rossum, G., and F. L. Drake. 2009. Python 3 reference manual. Scotts Valley, CA: CreateSpace.
  • Viereck, L. A. 1992. The Alaska vegetation classification. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
  • Walker, D. A., M. O. Leibman, H. E. Epstein, B. C. Forbes, U. S. Bhatt, M. K. Raynolds, J. C. Comiso, et al. 2009. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters 4, no. 4: 045004. doi:10.1088/1748-9326/4/4/045004.
  • Walker, M. D., C. H. Wahren, R. D. Hollister, G. H. R. Henry, L. E. Ahlquist, J. M. Alatalo, M. S. Bret-Harte, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences 103, no. 5: 1342–6. doi:10.1073/pnas.0503198103.
  • Wallace, C. A., and J. L. Baltzer. 2020. Tall shrubs mediate abiotic conditions and plant communities at the taiga-tundra ecotone. Ecosystems 23, no. 4: 828–41. doi:10.1007/s10021-019-00435-0.
  • Wang, J. A., D. Sulla-Menashe, C. E. Woodcock, O. Sonnentag, R. F. Keeling, and M. A. Friedl. 2019. ABoVE: Landsat-derived annual dominant land cover across ABoVE core domain, 1984–2014. Oak Ridge, TN: ORNL Distributed Active Archive Center. doi: 10.3334/ORNLDAAC/1691.
  • Way, R. G., and C. M. Lapalme. 2021. Does tall vegetation warm or cool the ground surface? Constraining the ground thermal impacts of upright vegetation in northern environments. Environmental Research Letters 16, no. 5:054077. doi: 10.1088/1748-9326/abef31.
  • Weintraub, M. N., and J. P. Schimel. 2005. Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. BioScience 55, no. 5: 408–15. doi:10.1641/0006-3568(2005)055[0408:NCATSO]2.0.CO;2.
  • Wickham, H. 2016. Ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. https://ggplot2.tidyverse.org.
  • Wilcox, E. J., D. Keim, T. de Jong, B. Walker, O. Sonnentag, A. E. Sniderhan, P. Mann, and P. Marsh. 2019. Tundra shrub expansion may amplify permafrost thaw by advancing snowmelt timing. Arctic Science 5, no. 4: 202–17. doi:10.1139/as-2018-0028.
  • Yue, S., P. Pilon, and G. Cavadias. 2002. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology 259, no. 1: 254–71. doi:10.1016/S0022-1694(01)00594-7.